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l.O PROJECTOVERVIEW
i.i Introduction

The current report summarizes the fourth year of technical developments on
the NESSUSsystem for Probabilistic Structural Analysis Methods. The
described FY'88 effort focused on the continued expansion of the
Probabilistic FEMcode, the implementation of the Probabilistic Boundary
Element Method (PBEM),and the implementation of the Probabilistic
Approximate Methods (PAppM)code.

The team for this past year's effort included the following individuals and
organizations:

SwRI:

Consultant:

University of Arizona:

Rocketdyne:

Dr
Dr
Dr
Dr
Dr
Dr
Mr
Ms

T.A. Cruse
O.H. Burnside
Y.-T. Wu
S.T. Raveendra
S.V. Harren
R.C. McClung
H.R Millwater
J.P. Buckingham

Mr. J.B. Dias

Prof. P. Wirsching
Mr. Y. Torng

Dr. K.R. Rajagopal

The report focuses on changes and additions to the NESSUSsystem, and does
not cover the work performed prior to FY'88; that work are covered in the
previous versions of this annual report.

1.2 Summaryof Major FY'88 Accomplishments

The principal focus for the PFEM code in FY'88 was the addition of a

multilevel structural dynamics capability. The strategy employed for the

structural dynamics code was developed by Dr. James Unruh at SwRI,

including consultations with the staff at Rocketdyne. The strategy

includes a Level 0 model (probabilistic loads), Level i (parametric

treatment of material, geometry uncertainty), and Level 2 (full

probabilistic variables). The details of these levels is covered in

Chapter 3. The implementation details within the FEM package are covered

in Chapter 2.

The probabilistic methods research is reported in Chapter 4. The focus of

this work was to further validate the Fast Probability Integration

algorithm, developed by Dr. Wu of SwRI, and to introduce the integrated

FPI/Monte Carlo capability. The addition of Monte Carlo meets the contract

requirement for two independent probability methods in NESSUS.



Chapter 5 is concerned with the NESSUS/EXPERTmodule. The EXPERTmodule is
to address critical issues of the user interface for NESSUS.Conti_ued
effort was devoted to the menustructure, error checking, and HELPfile
portions of NESSUS/EXPERT.Extension of EXPERTto include the
probabilistic variables was madein FY'88. The users continue to acquire
applications knowledge for additions to the rule base of NESSUS/EXPERT.

Chapter 6 addresses the significant amount of work performed on the
Probabilistic Boundary Element Code (PBEM)to add it to the NESSUS
framework. Particular focus was given to the use of domain integration
methods that reduce the domain integral to "equivalent" boundary integrals.
These were implemented for thermal and steady-state dynamic loading,
inhomogeneousmaterial properties and plasticity.

Four additional validation problems were completed in FY'88, and are
reviewed in Chapter 7 and Appendix F. The validation results continue to
demonstrate the robust character of the NESSUScode over a wide range of
analysis types.

Rocketdyne reports in Chapter 8 on the extensive verification work

accomplished on Problem 1 (Turbine Blade) and Problem 2 (Oxidizer Duct).

Both application focused on structural dynamics issues; the first for

normal mode vibration, and the second for forced, random vibration.

Experimental data existed for the first problem and showed good

confirmation of the NESSUS predictions.

One of the potentially-powerful tools developed within the NESSUS framework

are the approximate methods. These methods show promise for giving a quick

understanding of what design variables are driving the uncertainty in

system response variables. The applications problems and the technical

approach are outlined in Chapter 9.

The Level 3 stochastic thermoviscoplastic material model development is

summarized in Chapter I0. The elements of the algorithm are developed in a

generalized manner, and implemented for elasticity + creep, with void

growth failure. Application of probabilistic methods to history dependent

problems such as this require special attention to account properly for the

history dependence of the subject problem.

Significant contributions on the Reliability Methods used in PSAM have been

prepared by the University of Arizona (under the direction of Prof. Paul

Wirsching) are included in the Appendices. Validation studies for

approximate methods are also included. A special study of the efficiency

and functioning of the NASA-sponsored BEST]D code is summarized in Appendix

H.

1.3 Future Effort

FY'89 is the final year of the current technical effort. The code

development effort will be completed and documented. The full nonlinear

material and geometric features will be implemented. Application of the

NESSUS code will be made to the oxidizer post (creep) and the transfer duct

(large deflection) problems.



The next major FEMcode delivery is expected to be in February of 1989.
Final FEMcoding will be done in May. The verification studies for the
PBEMand PAppMcodes will be completed.

Continued effort into FY'90-'92 has been proposed. The principal focus of
that effort is on the development of a comprehensive package for full
reliability evaluation. Damagestate, failure criteria, and probabilistic
structural analysis models will have to be combined.

1.4 Publications

The following papers and presentations were accomplished during the past
year:

I. "Designing for an Uncertain World," T.A. Cruse, accepted by Aerospace

America.

2. "Validation of the NESSUS Probabilistic Finite Element Analysis

Computer Program," Y.-T. Wu and O.H. Burnside, 29th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, Williamsburg, Virginia, April 18-20, 1988.

3. "NESSUS/EXPERT - An Expert System for Probabilistic Structural

Analysis Methods Methods," H.R. Millwater, K. Palmer, and P. Fink,

29th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, Williamsburg, Virginia, April 18-20, 1988.

4. "Efficient Probabilistic Structural Analysis Using an Advanced Mean

Value Method," Y.-T. Wu and O.H. Burnside, 1988 ASCE Specialty

Conference, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, May 25-27, 1988.

5. "Probabilistic Methods for Structural Response Analysis," Y.-T. Wu,

O.H. Burnside, and T.A. Cruse, ASME Symposium on Computational

Probabilistic Methods, UC-Berkeley, California, June 20-22, 1988.

(Also pending publication in COMPUTATIONAL METHODS OF RELIABILITY

ANALYSIS, edited by Wing Kam Liu and Ted Belytschko, Elmepress

International).

6. "Probabilistic Structural Analysis Methods and Applications," T.A.

Cruse, J.B. Dias, and K.R. Rajagopal, Symposium on Advances and Trends

in Computational Structural Mechanics and Fluid Dynamics, Washington,

DC, October 17-19, 1988.

7. "Probabilistic Structural Analysis for Advanced Space Propulsion

Systems," T.A. Cruse, J.F. Unruh, Y.-T. Wu and S.V. Harren. Submitted

to the 24th International Gas Turbine Conference, ASME.

A bound volume of this and other PSAM related material has been forwarded

to the NASA Program Manager.





2.0 NESSUSFINITE ELEMENTCODEDEVELOPMENT
2.1 Introduction

The NESSUSfinite element code is being developed within the framework of
the probabilistic structural analysis (PSAM)development effort,
coordinated by Southwest Research Institute for the NASALewis Research
Center. The main objective of this effort is the development of advanced
probabilistic structural analysis methods, which combine the versatility of
modern finite element methods with the latest developments in the areas of
probabilistic modeling and structural reliability.

2.1.1 Status at the End of FY'87

Muchof the development effort during FY'87 was geared towards providing
more sophisticated analysis capabilities for dealing with complex
engineering problems. The major development tasks included:

o Extension of the iterative perturbation algorithms for linear
elastostatics to a three field mixed-iterative finite element
formulation.

o Development of a consistent strategy for tracking several
perturbations across multiple increments of static loading.

o Extension of the stochastic eigenvalue capability to account for
random initial stress fields and the associated stress-stiffening
effects.

o Development of a new family of continuum-type finite elements based
on independent strain interpolation.

o Development of finite deformation algorithms for handling
deterministic problems involving geometric nonlinearities.

o Extended facilities for database manipulation and management.

By the end of FY'87 the NESSUSfinite element code offered sophisticated
modeling capabilities for handling a wide range of probabilistic
elastostatic and eigenvalue problems. NESSUS2.5 was released to the
membersof the PSAMteam in September '87 and was being exercised on

several validation and verification problems by the end of FY'87. This

version supported the ability to carry perturbation results across

multiple static load increments, and to perform dynamic eigenvalue

problems using the initial stress field computed at any one of these

increments. This version also included a full library of continuum

elements based on independent strain interpolation. The ability to

perform elastostatic analysis for the perturbed problem using either the

displacement method or the mixed-iterative formulation was fully

supported in this version of the code.



2.1.2 Code Deliveries in FY'88

Linear dynamics problems were the focus of much of the development

effort in the NESSUS finite element code during FY'88. Other

significant developments included buckling problems, Level 1 analysis

and transient dynamics.

NESSUS 2.6 was released to the members of the PSAM development team in

December '87. This version included an alternate algorithm for the

solution of the perturbed dynamic eigenvalue problem, allowing the

computation of accurate results in problems where the available number

of unperturbed modes is inadequate for the use of a perturbation

expansion series.

NESSUS 2.7 was released to the members of the PSAM team in January '88.

This version introduced the ability of solving stochastic linearized

buckling eigenvalue problems for structures with uncertain geometric

imperfections, material properties and load patterns.

NESSUS 3.0 was released to the members of the PSAM team in May '88.

This version included an extensive redesign of the harmonic and random

vibration capibilities, support for the extended database format, and

the ability to perform probabilistic harmonic and random vibration

analyses for uncertain structural systems subjected to uncertain loading

environments.

NESSUS 3.1 was released to the members of the PSAM team in August '88.

This version included the Level 1 perturbation post-processor, together

with a more closely integrated implementation of the FPI analysis

module. A new automated frequency band discretization scheme to

facilitate input definition for random vibration analysis was also

introduced in this version.

The development of a perturbation strategy for transient elastodynamics

was nearing completion by the end of FY'88. However, this capability is

not yet available in the released version of the NESSUS finite element

code.

2.1.3 Operating Systems

Special versions of the NESSUS finite element code have been developed

to support a number of different operating systems. NESSUS 3.1 is

currently available under the following widely used operating systems:

o The VAX/VMS TM Operating System.

o A standard UNIX TM version using Berkeley 4.2 extensions.

o The CRAY/COS TM Operating System.

o The CRAY/UNICOS TM version of UNIXTM,



The NESSUSfinite element code is written in standard FORT_kN-77. In
order to enhance portability, all system-dependent functions are
intentionally encapsulated in a small set of system routines which must
be customized for the individual operating system. These
system-dependent routines perform tasks such as obtaining the calendar
date and time, keeping track of central processor usage ("computer
time"), and controlling file opening and closure.

A set of commandprocedures and editor scripts used to generate
customized versions of the NESSUSfinite element code for different
operating systems has also been developed. These utilities are written
in the DCLTMcommandlanguage and run under the VAX/-VMSTM Operating
System [I].

2.2 Buckling Analysis of Uncertain Systems

Structural stability (buckling) problems are well-known to exhibit a great
degree of sensitivity to initial imperfections in the geometry, the
boundary conditions and the imposed load pattern. As these imperfections
mayresult from fabrication tolerances, initial straining during assembly,
and even from damageincurred during storage and transport of the
components, the nature and distribution of these imperfections is rarely
the samefor all samples, and very often can only be described in
statistical terms.

Although the effects of initial imperfections are more clearly observed in
a formal finite deformation nonlinear buckling analysis, the study of a
simpler linearized buckling eigenvalue problem often provides a good
first-order approximation to the behavior of the real structure.
Therefore, the solution of the stochastic version of the linearized
buckling eigenvalue problem for randominitial imperfections remains a more
cost-effective way to provide useful engineering information on the
buckling behavior of real structures.

Typical perturbation methods for linearized eigenvalue problems [2,3] are
based on regular perturbation expansions of the perturbed eigenvalues and
eigenvectors in terms of the solution to the unperturbed eigenproblem. The
objective is to obtain a l_near combination of the unperturbed modes which

is, in some sense, close to the solution of the perturbed problem. A key

assumption for this class of methods is that the set of unperturbed modes

must be sufficiently "rich" to adequately represent a "good" approximation

to the solution of the perturbed eigenproblem.

VAX/VMS and CDL are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

CRAY/COS and UNICOS are trademarks of Cray Research, Inc.



This assumption is not overly restricti- _ whendealing with typical dynamic
eigenvalue problems, in which a sufficiently large numberof unperturbed
modesare usually available. By contrast, in a standard buckling
eigenvalue problem, only the lowest mode(or at most a few of the lowest
modes) are of practical interest to the analyst. As a result, the
available set of unperturbed modesis hardly adequate for the use of a
perturbation expansion approach.

The strategy adopted in the NESSUSfinite element code for the solution of
the perturbed linearized buckling eigenvalue problem amounts to a "smart"
subspace iteration re-solution of the perturbed problem. With this
approach, the converged vectors for the unperturbed problem are used as the
initial trial vectors for subspace iteration with the perturbed system.
Becausethe unperturbed vectors typically represent a "good guess" to the
actual modeshapes of the perturbed system, the subspace iteration
algorithm will tend to converge on the exact solution to the perturbed
problem with a reduced numberof subspace iterations. Although this
strategy cannot avoid the re-factorization of a large stiffness matrix at
every perturbation, it allows very accurate computation of the solution the
perturbed problem even whenonly one unperturbed buckling modeis
available.

This strategy was first implemented in NESSUS2.6 as an optional algorithm
for solving dynamic eigenvalue problems whenthe numberof unperturbed
modesis insufficient for the use of a perturbation expansion approach.
The ability to solve stochastic linearized buckling eigenvalue problems
using this approach was first introduced in NESSUS2.7. The present
implementation allows someflexibility regarding the choice of the initial
stress field used to construct the geometric stiffness matrix for the
perturbed buckling problem, which can be obtained using either a
displacement-based or mixed-iterative stress recovery procedure.

2.3 Revised Linear Dynamics Capability

Methods of linear dynamics based on mode superposition techniques are

widely used in aerospace applications for predicting the response of

elastic structures subjected to harmonic and random excitations. These

results are particularly useful for the estimation of low and high-cycle

fatigue llfe of components exposed to severe vibration environments.

The ability to perform basic harmonic and random vibration analyses for

deterministic structures has been available in the NESSUS finite element

code since version 1.0. However, a review of the existing code

capabilities by Rocketdyne in the Winter of '87 indicated the desirability

of developing a more sophisticated analysis capability. The desired

enhancements included:

o A more flexible and general input format for linear dynamics.

o The ability to include multiple cases of harmonic and random

excitation within a single computer run.



o Presentation of harmonic excitation results in terms of real and
imaginary componentsand/or phase and amplitude information.

o Harmonic base excitation input in terms of acceleration, not
displacement.

o Randombase excitation input also in terms of acceleration.

o An extended perturbation database format allowing for combination of
different dynamic response cases as a post-processing operation.

The Rocketdyne recommendationswere reviewed by SwRIand incorporated in a
specification for an extended linear dynamics capability in the NESSUS
finite element code. This revised linear dynamics capability was first
offered in NESSUS3.0. One further enhancement, the automated frequency
band discretization scheme, was added in NESSUS3.1.

2.3.1 Harmonic Excitation Problems

The revised linear dynamics capability allows for the analysis of an
arbitrary number of harmonic excitation cases at multiple driving
frequencies. Eachharmonic excitation case consists of a single or

multiple point excitation at a prescribed driving frequency, with the

amplitude and phase of the excitation specified individually at the

nodes. These excitations can be of three types:

o Harmonic point load excitations.

o Harmonic base accelerations.

o Harmonic nodal pressure excitation.

Harmonic point load excitations are sinusoidal forces of the form

]_(0))=37j e i (O_t - _ ") (2.1)

where 7/ is the amplitude and _j the phase of the excitation at a

frequency oo. These loads are applied at the nodes of the finite

element model, and can have active components in one or more spatial

directions. Both the amplitude and phase of the excitation may be

different for each component. Harmonic base excitations are prescribed

sinusoidal base accelerations of the form

ffj(co)= u) ei(cot-¢ 7 ) (2.2)

where u/ is the amplitude and _j the phase of the excitation at a

frequency ou. These accelerations are also applied at the nodes of the

finite element model, and can have active components with different

phase and amplitude in each spatial direction. A penalty-type approach

is used to impose prescribed base accelerations, which are then



converted to a set of equivalent nodal forces using D'Allembert's
Principle. Harmonic nodal pressure excitation involves sinusoidal
time-varying surface pressures of the form

Gij(m)=fi fj Pij(m) psd(co) (2.3)

where p, is the amplitude and _j the phase of the excitation at a

frequency co. This option is only available for meshes of

continuum-type elements, having well defined outward normals at each

surface node. The harmonic pressures are specified over a list of

surface nodes and act in the direction opposite to the outward normal at

each node. The amplitude and phase of the pressure can be specified

individually at each node, resulting in an arbitrary spatial pressure

pattern which varies sinusoidally in time.

The output for each harmonic excitation case includes:

o The harmonic excitation frequency.

o The real and imaginary parts of the displacements.

o The real and imaginary parts of the strains.

o The real and imaginary parts of the stresses.

These quantities are sufficient to completely describe the harmonic

response of the system at a given driving frequency. Additional

response information, such as the amplitude and phase of a given

response variable at a point, can easily be derived from these results

with a simple post-processing operation. Many of the programs used to

access data stored in the perturbation database are also capable of

performing similar types of data reduction.

The results for each harmonic excitation case are computed separately

and stored individually in the perturbation database. A number of

different case combination rules can then be used for post-processing

this information in order to obtain the desired low and high cycle

fatigue llfe predictions.

2.3.2 Random Vibration Problems

The revised linear dynamics capability also included several

enhancements to the random vibration drivers in the NESSUS finite

element code. The newer versions of the code allow for the analysis

of an arbitrary number of power spectrum excitation cases within a

single run. Each power spectrum excitation case consists of a

user-defined PSD profile, specifying the power of the excitation as a

function of the frequency, a spatial distribution, indicating the

location and intensity of the excitation, and an optional correlation

model, which may or may not be frequency-dependent. This model is

sufficiently general to describe any zero-mean Gaussian excitation

which is separabie in frequency and space, that is to say, which can



be modeled as the product of two functions" one defined over
frequency, the other over space. There are three types of power
spectrum excitations:

Randompoint load excitations.

Randombase accelerations.

Randomnodal pressure excitations.

Randompoint load excitations correspond to a forcing function which
can be described by a one-sided spectral density function of the form

Gij(co)=iii iij Pij((.o) psd ((-o) (2.4)

where 7, and ]j denote the local intensities of the random loading at

nodes i and j, p_j(_) is the correlation between nodes i and j, and

PSD (oo) represents the normalized power of excitation at frequency

oo. These excitations may have active components in one or more

spatial directions. Random base accelerations are described by

spectral density functions of the form

Gij(co)=pi pj Pij((.o) psd (¢0) (2.5)

where u_ and u I denote the local amplitudes of the imposed base

acceleration at nodes i and j, respectively. These excitations may

have active components in one or more spatial directions. A

penalty-type approach is used to impose the prescribed random base

accelerations. Finally, random nodal pressure excitations are

characterized by spectral density functions of the form

pj(o))=/_ e i (Cot - _ ") (2.6)

where Pt and p_ denote the local magnitudes of the random pressure at

nodes i and j, acting in the direction opposite to the outward

boundary normal at the corresponding node. This option is only

available for meshes of continuum-type elements, having well defined

outward normals at each surface node.

Time-average mean square values of the response variables are

obtained by integrating the one-sided spectral density of each

response variable over a prescribed range of excitation frequencies.

The current code implementation provides very fine control over the

way these results are reported. By default, only the overall mean

square results integrated over the entire range of excitation

frequencies are reported. Alternatively, the user may chose to

compute and store a set of partial mean square results, e_ch

I0



corresponding to a different range of excitation frequencies. This
allows a greater flexibility in the way results from different power
spectrum excitations are combined for the final post-processing
phase.

The output for each excitation frequency range includes:

o The excitation frequency range.

o The meansquare displacement values.

o The meansquare strain values.

o The meansquare stress values.

o The stress velocity values.

Thesevalues are computedseparately for each frequency range of
every power spectrum excitation case, and stored individually in the
perturbation database as distinct spectral response cases. Different
case combination rules can then be used for combining the results
from different power spectrum excitations to obtain the desired low
and high cycle fatigue life predictions.

2.3.3 Automated Frequency Band Discretization

The quality of the solution to a randomvibration problem is very
dependent on the accuracy of the integration of the spectral density of
the response over the full range of excitation frequencies. This is
particularly important in the analysis of lightly dampedsystems, which
tend to exhibit very sharp response amplification _peaks_ at the
resonant frequencies. Very often these _peaksn account for much of the
area under the spectral density function, and must therefore be
integrated with extreme accuracy.

Closed-form solutions have been developed for a single degree of freedom
oscillator subjected to idealized randomexcitations [i]. These results
have been generalized to obtain approximate closed-form integrals for
more realistic types of randomexcitation. However, for more complex
structures subjected to very general randomexcitation, one must resort
to methods of numerical integration.

All methods of numerical integration are based on sampling the integrand
at a discrete number of integration points. The density of the
integration points is related to the accuracy of the integration. It is
intuitively obvious that a smooth, slowly varying function can be
accurately integrated with relatively few integration points, whereas a
less smooth, rapidly varying integrand will require more frequent
sampling in order to achieve comparable accuracy.

In principle, it would be possible to determine an appropriate
integration step size based on the sharpest "peak" of the frequency
response function, and to use that minimumstep size uniformly
throughout the full range of excitation frequencies° Such a strategy
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would be certain to yield a very accurate result, but it would also fail
to take advantage of the smoothnessof the frequency response function
away from the resonant frequencies.

A more efficient algorithm should be able to divide the entire frequency
band into a set of uneven intervals, using a smaller integration step
only in the neighbourhood of the resonant frequencies. The appropriate
step size at each resonant frequency can be defined as a fraction of the
half-power width of the resonant "peak" at that frequency, which is a
function of both the natural frequency and the damping ratio. Such a
strategy would permit tailoring the frequency band discretization to
achieve a very accurate integration with a much reduced numberof
function evaluations.

It is important to note that the choice of the "optimal" frequency band
discretization requires advanceknowledge of the resonant frequencies of
the system. Therefore, the "optimal" discretization can only be
determined after solving the dynamic eigenvalue problem for the system.
Furthermore, in the randomvibration analysis of uncertain structures,
these natural frequencies will vary in response to random fluctuations
of the stiffness and mass of the structure, resulting in a different
"optimal" frequency band discretization for each realization of the
problem.

The strategy adopted for the NESSUSfinite element code uses an adaptive
algorithm for automated frequency band discretization. The user is
asked to provide a set of coarse macro-frequency bands, which are in
turn subdivided into a numberof smaller equally spaced intervals. In
addition, the user can also specify the minimumnumber of intervals to
be used for integrating the half-power band around each resonant "peak."
The code will then select an appropriate frequency band discretization
that meets all of the above criteria.

A typical frequency band discretization is shown in Figure 2.1. The
exact location and width of the two resonance half-power bands, denoted
by A and B in the figure, are determined internally by the code. In
this example, both are subdivided into four equal intervals. The least
damped"peak" will have a narrower half-power band, resulting in a
tighter integration step size. The half power bands from adjacent
resonances will sometimes overlap as shown in the figure. Below these
there are two additional bars, denoted by C and D, representing two
coarse macro-frequency bands defined by the user. The code will then
automatically generate the final frequency band discretization E such
that, at every frequency _, the integration step size is no greater
than the minimumof the three step size criteria A, B and C directly
above.

Because the exact location and width of the half-power bands at the
resonant frequencies are determined internally by the code, the
algorithm can respond to changes in natural frequency and damping by
adjusting the final frequency band discretization accordingly. Several
variable-order Gaussrules can be used to integrate the frequency
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response function within each integration step. These rules are known

for providing optimal accuracy for integrating polynomials with the

smallest number of function evaluations.

2.4 Linear Dynamics of Uncertain Systems

The linear dynamics capabilities discussed in the preceding section have

been extended to account for structures having random stiffness, mass and

damping characteristics. Uncertainties in the parameters defining harmonic

and random excitations can also be considered in the analysis. The ability

to perform harmonic and random vibration analysis for uncertain structures

was first introduced in version 3.1 of the NESSUS finite element code.

The effects of randomness in the structure are accounted for by computing

the changes in the natural frequencies and mode shapes induced by small

perturbations to the random parameters characterizing the structure. These

changes in natural frequency in mode shape will, in turn, affect the

dynamic characteristics of the system, and result in a different response

to harmonic and random excitations. In this manner one can determine how

uncertainties in the structure propagate to the response, and use of

standard probability analysis methods (such as fast probability

integration) to estimate the statistical characteristics of the response.

The analysis of uncertainties in the excitation parameters and damping is

somewhat simpler. These parameters have no effect on the natural

frequencies and mode shapes of the system and, therefore, need only be

accounted for in the frequency domain phase of the analysis. Many

conditional tests are built into the code to take full advantage of these

special cases by skipping most unnecessary computations without direct user

intervention.

2.5 Transient Dynamics of Uncertain Systems

The ability to perform transient elastodynamic analysis of uncertain

systems by direct time integration has been implemented in the development

version of the NESSUS finite element code. These capabilities will also be

available in the next release version of the NESSUS finite element code.

Probabilistic transient elastodynamics problems can be approached with the

use of perturbation algorithms for generating a set of parallel time

histories corresponding to small fluctuations of the random variables

present. These perturbed time histories provide information on how the

uncertainties in the problem parameters propagate through time and affect

the transient response at different points in time. It is interesting to

note that these uncertainties need not increase monotonically with time,

and will sometimes exhibit a nearly periodical reduction in uncertainty at

certain points in time. These points correspond to closely spaced

crossings of the unperturbed path by one or more perturbed time-histories

(Figure 2.2).
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Tile strategy used to generate perturbed time-histories is a generalization

of the elastostatic perturbation algorithm implemented in the NESSUS finite

element code. This algorithm is based on the use of the unperturbed

dynamic operator for the generalized Newmark-_ family of integration

algorithms to construct an iterated series of approximations converging on

the solution to the exact perturbed problem. In order to preserve

consistency (i.e., in order to converge on the correct solution), the

position, velocity and acceleration at each increment must be tracked

separately for each perturbation. All of the perturbations are carried

forward in time within each time step.

Transient elastod)rnamics problems can be solved with the NESSUS finite

element using either a displacement-based finite element formulation or a

more elaborate mixed-iterative procedure. Preliminary experience with the

dynamic perturbation algorithm exhibited very good performance if used in

conjunction with the displacement method. As observed in the static case,

the mixed-iterative strategy usually requires a much smaller perturbation

size in order to achieve comparable performance. Although the mixed method

will perform reasonably well for much of the analysis, its performance

degrades significantly in increments where the direction of motion must be

reversed. The problem can be mitigated by reducing the step size for those

time steps. This negates one of the major advantages of the

mixed-iterative formulation for transient elastodynamics, which appears to

exhibit remarkably small algorithmic damping and phase error even at

relatively large time steps. By comparison, the displacement formulation

exhibits poorer accuracy in terms of algorithmic damping and phase error at

large time steps, but remains far more robust with respect to perturbation

size.

The current implementation can account for uncertainties in the stiffness,

mass, damping and initial conditions for the transient problem. The

effects of uncertainties in initial conditions will tend to become less

significant for long time scales, but may contribute significantly to the

response uncertainty during the initial start-up transient phase.

2.6 The Extended Database Format

The implementation of the revised linear dynamics capability in the NESSUS

finite element code originated a need to systematically organize and store

multiple cases of frequency response data corresponding to an arbitrary

number of harmonic and random vibration excitations.

Earlier versions of the perturbation database (Figure 2.3) consisted of one

pair of two-way linked lists. One of these contains the solutions to

eigenvalue problems for dynamic modes or buckling analysis. The other is

used to store the system's response at every increment or time step. This

format offered no provision for storing multiple cases of frequency

response data within a single increment. In addition, the format

envisioned for reporting some of these frequency response quantities (e.g.,

real and imaginary components) did not neatly fall into any of the standard

data types available in the database.
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Different approaches for incorporating multiple cases of spectral response
data into the existing framework of the perturbation database were
evaluated. The most promising solutions included the following three
options:

o To nest the frequency response data within each increment.

This option would provide a simple interface to the perturbation database
and allow for the storage of frequency response data for different initial
stress states, however, the resulting database format would be incompatible
with earlier database versions, and all database interfaces would have to
be rewritten. In addition, the efficiency of searching for a given block
of data could degrade significantly for very large databases.

o To branch a one-way frequency response data list from each increment.

This option would offer the best overall efficiency when searching for a
given block of data. The ability to store frequency response data at one
or more initial stress states would be retained. The new format would have
somedegree of compatibility with earlier database versions, however, this
strategy would involve a far more complicated database interface, which
would be very cumbersometo modify later on.

o To introduce a third two-way linked list for frequency response data.

This option would retain a very simple database interface. It would also
offer the greatest degree of compatibility with earlier database versions.
The efficiency of searching for a given block of data remains very good,
however, a small loss of generality is incurred by restricting the storage
of frequency response data to a single prescribed initial stress state.

The third option appears to offer the most elegant and well-balanced
solution to the requirements for an extended database format, and was
selected for implementation in NESSUS3.0. The extended database format
(Figure 2.4) consists of three two-way ordered linked lists terminated by
null pointers at the ends. Both the eigenvalue and eigenvector data list
and the incremental or time step data list are identical to those used in
earlier database versions, and remain fully compatible with the earlier
interfaces. A new spectral response case list was added, containing
results for both harmonic and power spectrum excitations. All lists are
used to store both unperturbed and perturbed values.

The database interface subroutines used in the FPI and PFEMmodules were
rewritten to provide full support for the extended database format.
Several simple post-processing operations are built into this interface,
allowing the user to query for data not explicitly stored in the database,
but easily derived from the information present in the database. A new set
of database decoding and encoding utilities, fully supporting the extended
database format, were also included in the release of NESSUS3.0.
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2.7 The Level i Post-Processor

The LEVEL1 module, introduced in NESSUS 3.1, is a software implementation

of the Level 1 perturbation analysis strategy formulated by Southwest

Research Institute. Level 1 analysis is based on the simplifying

assumption that the uncertainties in the problem can be adequately modeled

in terms of a set of global scalings of the applied force, stiffness and

damping matrices. Under these assumptions, the perturbed system response

may be obtained by applying appropriate scaling factors to an available

unperturbed solution. Therefore, this type of analysis can be performed as

a purely post-processing operation on the deterministic results stored in

the perturbation database.

A typical Level 1 analysis (Figure 2.5) involves the following steps:

Step i: Run the deterministic problem using the FEM module and compute the

unperturbed solution. The total number of Level I random variables

should be specified in order to reserve the appropriate database slots,

but no perturbations are run at this stage.

Step 2: The FEM module writes the unperturbed solution to the perturbation

database, including a specified number of empty slots for the Level i

random variables.

Step 3: The LEVELI post-processor is started. This program recovers the

unperturbed solution from the perturbation database and modifies it with

the appropriate scaling factors to generate the Level i perturbations.

Step 4: The resulting Level I perturbations are written back into the

perturbation database. The final result will be the original

perturbation database expanded to include a new set of perturbations

generated by the LEVELI post-processor.

If necessary, steps 3 through 4 may be repeated several times.

It should be emphasized that Level I is a simplified type of analysis and,

as such, it is limited to a somewhat restrictive class of problems. The

analysis of more complex engineering problems will require the use of more

general perturbation methods. Still, Level 1 analysis offers a quick and

efficient way to perform simple "what if..." experiments in order to get a

basic understanding of how such uncertainties would affect the behavior of

the response.

2.8 Additional Types of Random Variables

Several new types of random variables were introduced in the NESSUS finite

element code within the past year. Many of the new random variable types

are used to parametrize uncertainties pertaining only to dynamic problems,

which were the focus of attention of much of the recent development effort.

Earlier versions of the NESSUS finite element code allowed the

specification of very general random variables defined in terms of:

o Geometry parameters
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o Material properties

o Beamsection properties

o Ground spring stiffness

o Concentrated point loads

o Element edge and surface tractions

o Nodal pressure loading

o Temperature distribution

o Centrifugal and gravity loading

o Anisotropy orientation

NESSUS3.0 added the following twelve new randomvariable types:

o Concentrated masses

o Rayleigh damping coefficients

o Viscous damping ratio

o Friction damping ratio

o Harmonic excitation frequencies

o Amplitude and phase of harmonic nodal loads

o Amplitude and phase of harmonic base accelerations

o Amplitude and phase of harmonic nodal pressure

o Profile of the power spectrum density

o Intensity of random nodal load excitation

o Intensity of random base acceleration excitations

o Intensity of random nodal pressure excitation

Three other random variable types have been added for the transient code:

o Initial displacements

o Initial velocities

o Initial accelerations

The format for defining random variables in terms of these quantities was

designed to follow the format for deterministic input as closely as

possible.

It should be noted that many ef these random variable types affect only

minor aspects of the overall analysis. Several conditional tests were

built into the code to detect perturbations having no effect on the outcome

of certain phases of the analysis, allowing the code to skip many

unnecessary computations. If appropriate, a "dummy" perturbation may be

added into the database. Such "dummy" perturbations are simulated by
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creating new logical links within the perturbation database, thereby
avoiding the storage of unnecessary data without disturbing the overall
structure of the existing database.

2.9 Miscellaneous Changes and Improvements

Several minor changes and improvements were made to the NESSUS finite

element code in order to enhance the versatility and usefulness of the

code. Among these, the most significant enhancements include:

o A concentrated point mass option was added.

o The input for closed-form beam section properties was cleaned-up and

documented. Provisions for non-structural beam section mass

properties were also introduced into the relevant code subroutines.

o A new user routine for specifying arbitrary power spectrum correlation

functions was added. This subroutine allows the specification of both

real and imaginary correlation terms, accounting for phase

information.

o A similar user routine was coded into the NESSUS/PRE module, allowing

the specification of more complex correlation models directly by the

user.

o The NESSUS/PRE module was extended to accommodate spatially correlated

fields of harmonic and power spectrum excitation.

o A power shift option was added into the NESSUS/PRE module, allowing

for spectral decomposition of random fields in which some components

are fully correlated or have zero uncertainty.

2.10 Future Effort

The planned effort for FY'89 will focus on the development of probabillstlc

nonlinear mechanics capabilities, and will include a major code cleanup and

documentation effort. The extension of probabilistic finite element

methods to nonlinear problems will address both material and geometric

nonlinearities. In order to maintain a purely nodal record of the

deformation history, allowing for stress recovery directly at the nodes,

the mlxed-iteratlve finite element formulation will be used for both types

of nonlinear analysis.

2.10.1 Material Nonlinearities

The nonlinear behavior of a material at a point is usually derived from

the total strain history for that point in terms of an evolutlon

equation involving several material parameters and state variables.

Uncertainties in nonlinear material response arise from two sources:

o Uncertainties in the strain history at a point resulting from the

random nature of the geometry, boundary conditions and loading

history.
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o Uncertainties in the material parameters resulting from material
inhomogeneity and variations in the processing of different
material batches.

For a given realization of the strain history and the material
parameters at a point, the evolution equation can be used to solve for
the evolution history of the remaining state variables.

In probabilistic finite element analysis, the uncertainties in strain
history are expressed in terms of the evolution of a randomdiscrete
strain field which is determined by the particular finite element
formulation. Therefore, randomstrain histories can be handled in a way
that is not substantially different from the way random strain histories
are obtained for incremental elastostatics or transient elastodynamics
problems.

The major new ingredients involve uncertainties in the material
parameters present in the evolution equations. The development of
stochastic material models for use in probabilistic finite element
analysis will require the introduction of uncertainty into the evolution
equations, expressed in terms of the random material parameters.

Therefore, stochastic material models will be characterized in terms of

distributions for yield stress, hardening modull, creep constants, and

other relevant material parameters.

The extension of the iterative perturbation strategy to situations

involving at least mild material nonlinearities appears to be

straightforward. The basic solution strategy involves tracking a set of

multiple perturbed time-historles, using the unperturbed tangent

stiffness at the beginning of the increment to precondition the

iteration. In addition, the values of the appropriate state variables

at several sampling points need to be carried forward between increments

in a consistent manner. Because the mlxed-iteratlve formulation

involves only the nodal values of these state variables, this operation

can be performed using the existing database format.

Difficulties will arise if the perturbed solutions stray too far from

the unperturbed path in the course of the analysis. This problem may be

aggravated by the presence of the incompressibility constraints

associated with the evolution equations for devlatorlc rate-lndependent

plasticity.

2.10.2 Geometric Nonlinearities

Geometric nonlinearities account for many of the most challenging

problems in computational mechanics. The solutions to these problems

are known to be extremely sensitive to initial imperfections in the

geometry of the original structure, which very often may only be

described in statistical terms. This behavior is often indicative of

the presence of complex multl-furcatlon points at which the solution can

take any one of several distinct equilibrium paths.
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The deterministic finite deformation algorithms currently implemented in
the NESSUSfinite element code are based on a Lagrangian mesh
description using the "updated Lagrangian" formulation. The strategy
involves repeated updates of the meshgeometry to the current
configuration, allowing the evaluation of the appropriate finite element
integrals over the volume of the deformed body. As a result, the finite
element equations remain very similar to the ones developed for the
small deformation case, and the only additional terms are used to
account for deformation gradients and rotation tensors.

The "updated Lagrangean" formulation is particularly well suited for use

in conjunction with the iterative perturbation algorithms coded in the

NESSUS finite element code. At each perturbation, the current

configuration may be obtained by composition of the initial geometry

perturbation (if any) with the total motion computed for that

perturbation. In this manner, the residual vector is computed by

integrating the stresses over the deformed volume of the perturbed body,

accounting for both nonlinear and perturbation effects. In order to

perform this operation correctly, the total deformation gradients for

all perturbed problems must be carried forward between increments in a

consistent manner. Again, the mixed-iterative formulation requires only

the nodal values of the deformation gradients, allowing the use of the

existing database to store the full deformation history for each

perturbation.

It should be noted that, even with the best available finite element

technology, the solution of seemingly simple de=erministic finite

deformation problems can become extremely complex. However, it is

anticipated that existing finite element methods will prove sufficiently

robust to allow probabillstic analysis of somewhat mild forms of

geometric nonlinearity. The analysis of complex post-buckllng behavior

may remain one of the most intractable problems of probabillstic

mechanics for yet some time, but at least the task of detecting the

presence of a bifurcation represents a much simpler problem, involving

the solution of a stochastic eigenvalue problem.

2.10.3 Code Documentation

A major code documentation effort is planned at the end of FY'89. This

will include the preparation of final versions of the User's Manual, the

System's Manual and a Theoretical Manual. Some time will also need to

be devoted to cleaning-up the final version of the code and reconciling

any discrepancies remaining after the freezing of major new development

work. Release of the final version of the NESSUS finite element code

with the full documentation is expected towards the end of FY'89.

2.11 References
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3.0 STRUCTURAL DYNAMICS FOR STOCHASTIC STRUCTURES AND LOADS

3.1 Introduction

The structural dynamics solution capability for probabilistic analysis in

the NESSUS code is organized by various levels of stochastic variation.

The NESSUS code allows progressively increasing levels of complexity in

random variable content to provide the analyst a stair-step approach to

understanding the significance of the analysis results by comparison to

results generated using less detailed random variation. The random

variation can be described as existing in the structure itself; in its

imposed loading in a global sense; or in an integral way by specifying

certain structural elements, properties, etc., or particular loading points

that exhibit unique random variation which cannot be handled in a global

sense.

In the NESSUS code, the dynamic response of a structure with stochastic

variation in physical properties of the structure or loading can be

synthesized in the frequency domain via modal analyses or in the time

domain via direct time integration of the system equations of motion. A

brief description of the analysis approaches will now be given along with

basic equations to illustrate the level of stochastic variation.

3.2 Frequency Domain Modeling

Three levels of frequency domain modeling exist in the NESSUS code as

indicated by the level content given in the table below. A brief

description of each of the modeling levels will now be given with an

outline of the corresponding dynamic equations of motion to explicitly

demonstrate the differences in the various modeling levels.

Table 3.1

Dynamic Analysis Modellng-Frequency Domain

LEVEL 0
Ill

Deterministic

Struc tur e

LEVE___L_i

Global Uncertainty

LEVEL

Full Uncertainty

Modal Analysis Scaled Elgenvectors Perturbed Elgenvectors

Periodic Uncertain Periodic Random Periodic

Deterministic Random Uncertain Random Uncertain Random

3.2.1 Level 0 - Deterministic

In Level 0 analysis, the structure is considered to be deterministic as

well as the loading, except for the case of a specified power spectral

density loading function. This is the type of analysis most often

considered for random loading of structures. In the usual manner the

frequency domain solution begins with an expansion of the nodal

equations of motions in terms of the homogeneous system eigenvalues and
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eigenvectors, normally referred to as the system undamped normal modes.

For viscous like damping proportional to the system mass or stiffness

the expanded equations of motion become a set of NR uncoupled single

degree of freedom (DOF) oscillators,

#,(t)+ 26,_,q,(t)+_q,(t)= l,(t). (3.1)

r= 1.2.3...NR

where qr(t) is the modal DOF, _r the equivalent viscous damping

coefficient, w, the undamped normal mode frequency, and It(t) the

generalized modal loading for the r th modal DOF. The structural nodal

motions, u, are related to the modal DOF via the system eigenvectors as

(u}.[_,](qr} (3.2)

where @, is the r th mode eigenvector.

The generalized modal loading is determined from the applied nodal

loading, ](S,l), via,

I_(t).LO,(s)/(s.t)ds (3.3)

where the integration is over the structural surface, S. For case of

periodic loading, where the excitation occurs at distinct frequencies

to, the generalized loading takes the form

Lr(_)" L#r(s)F(s)e_,s(,)d s (3.4)

where F(S) is the spatial variation in the applied periodic loading and

8(S) is the relative phase variation across the structure. The explicit

periodic variation of the form e"' is implied in the above equation via

the use of upper case variables. The modal response, Qr(_) to the

periodic loading takes the form

Qr(_) = H(_)ir(_) (3.5)

where H(uo) is the single DOF transfer function. The resulting motion

at the i th structural node is computed from the equation above as

wz (3.6)

r-|

For a deterministic random loading in the form of a stationary Gaussian

power spectral density (PSD) the one sided modal cross-spectral density

between the m th and n th modal responses, G(_)q,q, is computed from

G(_)q.q. - H(_).H(_): f f .,(s).PSD(s, s', _),(s).dsds"
(3.7 )
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where the asterisk denotes the complex conjugate operator. The double

surface integral is generally referred to as the cross-joint acceptance

function for the structure, J(_)=_. The cross-joint acceptance function

describes how the input couples to the structure over its length or

span. The corresponding displacement cross-spectral density function,

G(oo)u,uj takes the form

"" "* (3.8)
= y

_-ia-l

where the summation is over all the retained modal responses.

Stress modal functions are defined from the element stress displacement

relationships and similar mathematical expressions result to describe

the stress auto-power spectral density for an element. Often, the cross

modal terms are neglected; if they are computed, only the real part of

the spectra has physical significance.

3.2.2 Level i - Global Probabilistic

A global probablllstic variation in the structure or loading is

considered in Level I analysis. The global variation can occur in the

following forms.

A. Stiffness Variation

[g]- [Ko] {1 + Y(_)} - [Ko]f (3.9)

B. Mass Variation

[_]=[Mo](l +Z(y)}-[Mo]2. (3.10)

C. Damping Variation

Viscous :

[_] - [C0]{l + _(_) = [C0]Q , (3.11)

Structural :

_=go{l+V(x)}-go Q. (3.12)

These global variations or uncertainties scale the dynamic response

variable mean values. The system eigenvectors, or mode shapes, scale as

{_,} = 2-":_{_o,} (3.13)

The system eigenvalues, or frequencies squared, scale as

_-r" (?/2)Xor (3.14)

and the viscous proportional damping ratios scale as

_, = [_-_/(2_)'"2]13o, (3.15)

where {¢o,},kor,and _o, and are, respectively, the rth mean eigenvector,

eigenvalue, and viscous damping ratio.

D. Periodic Load Variation
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. . . ,,0(,)p,,=c, (3.16)](s)e "_'-*°" -/_JotS)_

where R,P.andC are respectively, the global stochastic variation in the

periodic load magnitude, phase, and driving frequency and

/o(S),0(S).and_ are respectively, the mean applied load, phase, and

driving frequency.

E. PSD Variation

P_O(s,u_)-{1+ R(_)}2PSDo(s,uo) = _ZPSOo(S,UO) (3.17)

where _ is the global stochastic variation in the random loading, and

PSDo(S,u_) is the measured or most probable mean loading spectra. Here

we do not distinguish between variation in PSD level, phase, or

frequency on a global basis since such detail would not be unique.

The rth generalized modal response to random periodic loading of a

structure with global stochastic variation of its mass, stiffness, and

damping properties takes the form

_,(_) - rice.P),LA_) (3.18)

where Lr(UO) is the Fourier transform of the rth generalized force of the

mean loading and H,(_,_) is the random oscillator transfer function for

proportional viscous damping. An identical expression results for

structural damping by replacing the transfer function with H(uo,g). The

general form of the transfer function for viscous damping is

_((A). g) " 2liFter --_22_Z+ i2_Or(A)0r_ ] (3. 19)

and for structural damping it is

R(c_, g) - 21[Fu,)_r - C'2_ z+ ig,,x)_r_? ] (3.20)

The generalized load for the r th modal degree of freedom would take the

first order form

Lr(u_ ) "2 ,,z_ / _or(S)jo(S)exp[_i_o(s)]d s (3.21)
|

- i2"2_p(_) f _or(S)[o(s)Oo(s)e×P[-_Oo(s)]ds

|

+[Higher Order Terms of P(£)]

where P(J?) is the zero mean random variation of the phase _. Nodal

responses such as displacements, velocities, and accelerations would

then be expressed, respectively, as

.

(3.22a)

(3.22b)
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and

[ - ]U,(_)=Re -_2_22 "2Z*o,,(_r(_)} . (3.22c)
r=l

where the Re operator denotes the real part of the resultant. The

element stresses would then be computed from the stress displacement

relationships for the given element.

The major concern when introducing random excitation in the form of a

power spectral density function (PSD) is how to introduce uncertainty in

the structure and loading. In NESSUS the approach has been to assume

that the uncertainty in the structure is independent of the uncertainty

in the loading and vice versa. With this assumption, the modal

cross-spectral density function becomes

_(_)q.q. - _22-'_(_).A(_)_J(_)_. (3.23)

where the cross-joint acceptance function, J,,(_), does not exhibit

global random variation due to the assumed independence in the structure

and loading and as such takes the form as specified in eqn. (3.7).

The displacement cross spectral density between the i th and jth nodes

becomes

_, M, (3.24)

and likewise the velocities and accelerations are, respectively

C (_).,,, = __2_ Z_ (u_).,.,, (3.25)

and

_(_)i,,,,= oo'(_'(_(_).,.,
(3.26)

Stress modal functions are again defined from the element

stress-displacement relationships; similar mathematical expressions

result to describe the stress auto-power spectral density for an

element. As with the deterministic case, the cross modal terms are

often neglected; if they are computed, only the real part of the spectra

has physical significance.
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3.2.3 Level 2 - Full Uncertainty

When considering full uncertainty throughout the structure, or parts

thereof, and uncertainty in the loading with partially correlated random

variables, explicit solutions to the dynamic response of the structure

are no longer possible except in a few special cases. For the general

case NESSUS synthesizes the partially correlated variables into

uncorrelated modes [i]. The system eigenvalues/eigenvectors are then

computed, along with structural responses for a given loading, for each

independent uncorrelated mode. The results are stored in a data bank

and efficient probabilistic methods [2] are then used to construct

dynamic response distribution functions for the response variables of

interest.

3.3 Time Domain Modeling

For transient loading analyses the deterministic and full uncertainty cases

are treated similarly. A Newmark & Beta direct time integration scheme [3]

is employed to obtain the time history response of the structure. For the

case of full .uncertainty the partially correlated variables are synthesized

into uncorrelated modes and each independent structural variation and

loading case is solved independently. The analysis results are stored in a

data bank and probabillstlc methods are then used to construct response

distribution functions.

3.4 Dynamic Loading Functions

The dynamic loading functions available in NESSUS are in the form of point

harmonic loads, nodal harmonic pressures, surface distributed random

loading, base excited point harmonic accelerations or acceleration power

spectral density excitation, and explicit time history nodal loadlngs.

Generic load models with multiple levels of progressive sophistication to

simulate the composite load spectra that are induced in space propulsion

system components representative of Space Shuttle Main Engines are being

generated by Rockwell International Corporation, Rocketdyne Division

engineers. Every effort has been made in the NESSUS code to accommodate a

wide variety of possible loading scenarios. A major task underway is the

integration of specific loading descriptions into the NESSUS loads data

base.

3.5 References
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4.0 NESSUS PROBABILITY ALGORITHM DEVELOPMENT

4.1 Introduction

This chapter summarizes the NESSUS probability algorithms development

during the past year.

Section 4.2 reports on the performance of the advanced

mean-value-first-order (AMVFO) method. The AMVFO method, developed

originally for the NESSUS analysis, has been shown to be very effective in

solving the NESSUS validation problems [4] as well as the turbine blade

verification problem.

Section 4.3 describes the development of a methodology for estimating the

probabilistic solution for the entire structural component using limited

perturbation solutions at selected nodes.

The turbine blade verification problem has led to the extension of the

AMVFO method to a more general class of problems involving strongly

non-monotonic performance functions. Section 4.4 presents a simple solution

to modify the AMVFO solution for this new class of problems.

Section 4.5 reports on the efforts of integrating the FPI and a fast Monte

Carlo code. The integration has been completed and tested successfully.

This new simulation capability allows an independent checking of the FPI

results.

The NESSUS/FPI code has also been modified for PAAM analyses. The details

of the modification is provided in Section 4.6.

One major NESSUS analysis capability is dynamics analysis which is being

validated (see Chapter 7). Section 4.7 discusses the strategies for the

uncertainty characterizations of the dynamics loads.

Section 4.8 reports on the progress of code development for solving

problems involving non-normal dependent random variables.

4.2 Advanced Mean Value First Order Method (University of Arlzona Report)

The probability distribution of a response function (e.g., stresses,

displacements) can be calculated efficiently employing the advanced mean

value first order method (AMVF0), an abbreviated form of the most probable

point locus method (MPPL). The scheme, first developed for the PSAM

program by Wu has wide application in probabillstlc mechanics and design.

Following is a description of AMVFO and MPPL.

Consider a response function

z - z (_x) (4.1)

where X is a vector of n random design factors. Z can be either explicit

or implicit. Determine the CDF of Z, denoted as FZ. If Z is an explicit

function of X, then the construction of the FZ, is straightforward using

Monte Carlo or fast probability integration. All numerical reliability

methods require many (I00 to i0,000) function evaluations, a very fast

operation with a digital computer if Z is an explicit function of X.
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However, whenZ is an implicit function (e.g., Z(_) defined only through a

finite element code) a single function evaluation may be costly. So the

fundamental question is how do we construct a high quality CDF of Z with a

very minimum of function evaluations?

The most probable point locus method (MPPL) as proposed by Y.-T. Wu may be

close to the optimum in requiring a minimum number of function evaluations

relative to the accuracy of F Z. There is no formal proof of this, but

intuition suggests that it would be difficult to produce a reasonable

estimate of F Z with fewer function evaluations.

A detailed description of MPPL, an iterative process, is given in Appendix

A. In summary, the system follows the steps:

I. Approximate Z as a linear function of _. This requires solutions

at the mean value and at small perturbations about the mean to

evaluate the parameters of the linear function.

2. Now that an explicit function (albeit approximate) is available,

reliability methods, (e.g., [3]) can be used to approximate

probabilities in selected points in the sample space of Z. This

first approximation to F Z, CDF of Z, called the mean value first

order (MVFO) method is, in general, not likely to be accurate.

3. To improve the estimate of FZ, the function Z is evaluated at

each deslgnpoint. These are "improved Z's at each probability

level. This "first move" in MPPL is called AMVFO. As shown in

Appendices A and B, AMVFO provides remarkably accurate estimates

of F Z in most cases.

4. A linear approximation to Z can be obtained at each of the design

points. This requires again perturbed solutions to Z. And

again, a fast probability integration method can be employed for

point probability estimates in the "second move" to construct F Z.

An improved F Z is obtained at each Z.

5. For the "third move," the function is evaluated at the design

points computed in step 4.

While steps 4 and 5 can be repeated to improve the estimate of Z, it has

been found that AMVFO consistently proves an accurate estimate of F Z as

demonstrated in Appendlx B.

The critical issue is that the number of costly function evaluations must

be limited for an efficient solution to F Z. Figure 4.1 dramatically

illustrates the power of AMVFO in this regard. In summary, AMVFO generally

is expected to provide a high quality F Z with a minimum of function

evaluations.

The detailed summary of MPPL of Appendix A provides examples which

illustrate the MPPL process. And presented in Appendix B is a summary of

the experiences with AMVFO by the team at the University of Arizona.

Attempts were made to find problems for which AMVFO would perform poorly.
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The general conclusion from the study was that AMVFO seems to be robust.

The largest errors in _-__(Fz) were about 10% (_ is the standard normal

CDF).

4.3 The Field Problem

The most probable point locus (MPPL) method has been shown to be a very

efficient and effective way of establishing the CDF of an explicit (or

implicit) function. Wu has proposed an extension of MPPL to construct the

marginal CDF's of a vector of correlated response variables, Z - Z(_) where

Z is a vector of response functions.

Consider two response functions Z I - Z 2 which are correlated.

Z,- Z,(X) (4.2)

Z2- Z2(X) (4.3)

where X is a vector of random design factors.

Here, Z I is known to be the "most important" variable and is called the

master. Coordinate Z2 is the slave. Note that Z I and Z2 are correlated.

The CDF's of both ZI and Z2 can be established by direct application of

MPPL. But there is promise that the CDF of Z2 could be constructed more

efficiently by (a) employing MPPL to obtain the CDF of El, and (b)

estimating the CDF of Z2 at each point knowing the correlation coefficient

between Z I and Z 2 based on linear approximations to ZI and Z 2. In the

special case, where the response functions are linear and the random

variables are normal, this process produces the exact CDF of Z2. For the

general case where the response functions are nonlinear and/or the random

variables are non-normal, it is hoped that the approximation to the CDF of

the slave variable is "accurate." This scheme will be referred to herein

as "Wu's approximation." A detailed description of the operation of the

field problem is provided In Appendix C.

An example presented here is a case where the quality of the slave

variable, Z2, is poor for a low correlation coefficient between Z I and Z2.

However, it will be demonstrated that as the correlation coefficient gets

closer to i (by adjusting the parameters of Z1 and Z2) the quality of the

approximation to the CDF of Z 2 improves.

Consider a specific example:

Z,.u,,X+u,2Y+ul3Z (4.4)

Zz'UzIX+uzzY+uz3Z (4.5)

The random variables have the following distributions:

X - WEIBULL (I0, 1.0)*

Y - FRECHET (i0, 1.0)

U - EXTREME VALUE (I0, 1.0)

*mean and standard deviation

Consider the case where,
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(all, a12, a13) - (2., 1., 2.)

(a21, a22, a23) - (1., -1., 1.)

(4.6)

(4.7)

Employing the most probable point locus method, and the scheme as proposed

by Wu, the CDF's of Z1 (master) and Z2 (slave) were constructed. They are

plotted in Figure 4.2. The poor agreement between the exact CDF and the Wu

approximation for the slave comes as no surprise because of the relatively

low correlation coefficient, p - 0.58. However, the quality of the slave

improves as p approaches I. This example provides an illustration of how

the Wu approximation approaches the exact for increased values of the

correlation coefficient.

Five cases are considered that are summarized in Table 4.1. The

corresponding CDF's are plotted in Figures 4.2 through 4.6. Clearly, the

quality of the Wu approximation to the CDF of the slave improves as p

approaches i. However, there is still significant error for "high"

correlation coefficients. As a subjective comment, it is noted by this

author that the errors in the Wu approximation for other cases studied were

smaller. In fact, this example was chosen because of the relatively poor

quality of the slave CDF.

In general, the algorithm presented will provide a reasonable first

approximation of the CDF of the slave variables. However, in some cases

the errors may be significant. Additional research on this topic seems

appropriate.

Table 4.1

Summary of Examples

Case

I

2

3

4

5

Parameters Corr. Coeff.

(all, a12, 213)

2., i., 2.

2., I., 2.

2., 0.6, 2.

2., -i., 2.

2., -1.3, I.

(a21,a22, a23)

i., -I., i.

i., -0.58, I.

I., -0.5, I.

i., -I., I.

I., -I., i.

(p)

0.58

0.75

0.853

0.962

0.983

4.4 The AMVFO Method for Non-Monotonlc Response Functions

The turbine blade verification study has led to the extension of the

advanced mean-value-flrst-order (AMVFO) method for non-monotonic response

functions. Previously, it was assumed that only one most probable point

(MPP) exists in the probability region of interest.
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Figure 4.6 Case 5:0 = 0.983
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In the turbine blade analysis, the modulus of elasticity is a function of

material orientation. The first bending frequency is, in theory, a

non-monotonic function. Based on the previous AMVFO solution procedure,

the resulting CDF would be non-monotonic which violates the definition of

CDF.

In general, the AMVFO solution requires modification if more than one MPP

exist. To solve the problem, all the significant MPPs should be identified

first and then the probability solution should be modified by assuming

multiple performance functions. The system reliability analysis methods

[6], particularly the reliability bounds theory, can be applied to estimate

the probability.

An efficient, approximate solution has been proposed [7] by assuming that Z

is a non-monotonic function on the MPPL of ZI, the mean-based linear

approximation. Under this assumption, the CDF produced by the earlier

AMVFO procedure would be a non-monotonic function. The corrected CDF can

be obtained by assuming multiple, fully-correlated Z-functlons. For

example, for the two-MPP cases, the modified CDF can be derived by

subtracting or superimposing two probabilities associated with the two

CDF's. The solution procedures for concave and convex Z functions are

illustrated, respectively, in Figures 4.7 and 4.8. Note that the modified

CDF's are truncated at the left or right tails. This reflects the facts

that the Z functions are non-monotonic, having lower or upper bounds.
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Based on the new procedure, it appears that the previous turbine blade

analysis result remains valid. However, the modlfledAMVFO procedure

suggests that the first-mode turbine blade frequency is virtually

truncated, i.e., the frequency distribution has a lower bound. In addition,

the new procedure suggests that a modification to the AMVFO solution will

be needed if the uncertainties of the material orientation angles get

higher such that the non-monotonic effect becomes more significant.

The new procedure also indicates that, in performing iterations following

the AMVFO solution, it is important to keep track of both most probable

points to avoid oscillation between two solution points.

4.5 The Integrated NESSUS/FPI/Monte Carlo Program

The Monte Carlo program HARBITZ (using Harbitz's method, [8]) developed at

the University of Arizona [2] has been modified and included in the

NESSUS/FPI program.

Two Monte Carlo options are now available in the NESSUS/FPI code (Version

3.1):

Option l: The Monte Carlo routine utilizes the minimum distance (produced

from FPI) to define a reduced sample space. The user can also input a

reduction factor to decrease the minimum distance.

Option 2: The Monte Carlo routine bypasses the FPI routine and assumes that

the minimum distance is zero. This option provides an independent solution.

The procedure is, however, different from the standard Monte Carlo

procedure in that the Harbltzrs sampling procedure starts from a

standardized Gaussian sampling space.
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In the NESSUSanalysis, the FPI algorithm is being applied at two levels.
At the first level, the NESSUS/FPIcode generates probabilistic output
using the response function established based on the NESSUSdatabase. At
this level, NESSUS/FPIis accurate relative to the accuracy of the response
function. At the second level, which is more critical to the NESSUS
accuracy, the FPI algorithm directs the FEMmodule to "move" to another

perturbation center (the most probable point generated from NESSUS/FPI).

The first level is generally efficient because the response function is

explicitly defined. At the second level, however, finite element solutions

are required to define the response function (i.e., the response function

is implicitly defined), and the computation time becomes dominant.

The NESSUS fast Monte Carlo procedure is designed to be an alternative to

the NESSUS/FPI only at the first level. The major reason is that, even

with the "fast" Monte Carlo method, it appears generally impractical to

generate a "sufficient" number of NESSUS simulation solutions.

4.6 Modification to FPI

In additional to the new Monte Carlo routine, the NESSUS/FPI module was

modified for the PAAM analysis. The modified FPI module includes a

user-deflned function routine (KESPON) in which the response/performance

function is defined as:

Z ( X ) - f unction( X , , X 2 ...... X .) (4.8)

A routine was added to compute the response sensitivities (i.e., first- and

second-order derivatives) numerically. Finally the Rackwltz-Fiessler

iteration algorithm [6,9] is used to search for the most probable point.

This new capability allows a more convenient definition of the

response/performance function. Previously, the function must be defined in

the following form:

X _ - function( X 2, X_ ..... X.) (4.9)

to allow for the use of an unconstrained optimization routine to search for

the most probable point.

The new capability has been tested successfully using several examples

including a PAAM example involving a Lox Post response function.

4.7 Strategies for Uncertainty Characterization of Dynamic Loads

Three basic types of dynamic loads have been considered in the context of

NESSUS analysis. These are: periodic, random and transient (shock). For

each type of loads, random variables need to be defined to characterize the

uncertainty in the load.

For static loading, it is straightforward to treat the amplitudes of the

loads as random variables. When the loading is dynamic, the uncertainty of

the loading becomes more difficult to model. In general, a dynamic loading

can be treated as a stochastic process X(t). A stochastic process is a

history containing an uncountable infinity of random variables, one for

each _. The statistical properties of X(t) are completely determined in
terms of its nth-order distribution
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F(xj ..... x_:t,.._..t,)- P{X(t,) < x, ..... X(I,,) < x',,} (4. lO)

From the practical viewpoint, only certain averages are used. As an

example, the statistics of a normal process are completely determined in

terms of its mean and standard deviation.

For periodic loading, NESSUS treats the amplitude and phase as random

variables. For stationary random loading, NESSUS treats the mean and the

PSD as random variables. The FSD function is defined at several frequency

points. At each point, the PSD can be described as a random variable. A

special case is one in which the random variables are fully correlated so

that only one random variable, i.e., a random scale factor of the PSD

function, is needed. For multiple points random excitation, the

correlations between each PSD function must be known.

For transient loading, it is possible to define a random variable for each

time step if the loading can be described by using a reasonably small

number of time steps. This model is more applicable when the loading

function is relatively smooth and predictable over a period of time (i.e.,

the opposite of a white noise process in which the correlation is zero

between loads at any two instances). In Eeneral, this model becomes

impractical if the required number of time steps (thus the required number

of random variables) is large. Therefore, simple stochastic process models

which require only a few statistics would be more practical. If such

models can be used to approximate the actual processes, then the

uncertainty can be more easily characterized by treating the model

statistics as random variables.

A sample of the NESSUS dynamics validation problems is given in Chapter 7.

In this example, a cantilever beam is subjected to random base excitation.

The random variables include the material properties, the geometries and

the acceleration spectral density (ASD). The ASD is modeled as a truncated

white noise with uncertain intensity and the cutoff frequency is also

modelled as a random variable.

4.8 Non-normal Random Variables

The strategies for problems involving dependent non-normal random variables

have been documented in [2,7]. Two computer subroutines have been written

to facilitate the required random variables transformations. A strategy

was defined to integrate these subroutines with the NESSUS modules to

automate the solution process.
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5.0 NESSUS/EXPERT

5.1 Summary

NESSUS/EXPERT has been designed as an expert system to assist in the use of

the probabilist_c finite element code NESSUS/FEM and the fast probability

integrator (FPI). These codes contain a significant amount of new

technology and features and require data unique to probabilistic analysis

of structures. As a result, NESSUS/EXPERT performs a broad variety of

operations to insure a successful PSAM analysis.

NESSUS/EXPERT has been designed to be an interactive user friendly expert

system. The backbone of the system is an intelligent menu selection

procedure to guide the user in appropriate input choices. Help screens

explain input formats and provide detailed explanations of NESSUS keywords

and act as an on-line user's manual. Error checking is provided at various

levels to insure functional input data to the NESSUS and FPI programs.

NESSUS/EXPERT also provides advice and default values of probabilistlc

input to assist the user in selecting data for which the user is unfamiliar

or a knowledge base is not established.

5.1.1 Menu Structure

NESSUS/EXPERT is intended as an aid to probabilistic design. Therefore,

all input is driven by a user-frlendly interactive menu system. The

menus are divided into functional modules for easy input. An overview

of the NESSUS/EXPERT menu system is shown inFigure 5.1.

An intelligent menu selection procedure guides the user through data

input. NESSUS/EXPERT will disable certain menu selections based on

existing model data in order to prevent an input error. For example, if

the model is composed of plate elements, the beam section input module

will not he active thus preventing the user from inputting incorrect

information.

5.1.2 Help Screens

Help screens are provided for NESSUS keywords. Help screens provide

detailed Information on a keyword. These help screens cover the usual

finite element keywords and NESSUS specific keywords. Thus, the user

can obtain information on usual finite element inputs such as plasticity

theories as well as NESSUS specific keywords such as convergence

criteria.

Help screens serve in one sense as an on-llne users manual. The proper

format of input and the definition of the input variables can be

obtained on-line. For example, the help screen describing the element

connectivity, shown in Figure 5.2, describes the input variables and

proper input format.

In a more detailed sense, the user can get detailed explanations of a

keyword and its consequences. As an example, the user may have a finite

element model of a rotating structure and wants to know if the
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SOLUTION TYPE

- STATIC
- MODAL

- BUCKLING
- TRANSIENT

I
ELEMENT TYPE

- BEAM
- PLATE

-2£)
- AXISYMMETRIC

-30

BASIC MODEL

- COORDINATES

- ELEMENTS
- MASSES

- BOUNDARY CONDIT_NS
- SPRINGS

MATERIALS

- ISOTROPIC MATERIALS
- ANISOTROPIC MATERIALS

- LAMINATES

LOADINGS

-FORCES

-PRESSURES
-TEMPERATURES

-BODYFORCES

SOLUTION

- ITERATION

- INCREMENTS
- OPTIMIZE

- BANDWIDTH SOLVER
- FRONTAL SOLVER

- NEWTON-RHAPSON

PROBABILISTIC I

I

-FPIPROBABIUST_ DATA
-CONVERGENCE/STABILITY

-ACCURACY EVALUATION

Figure 5.1 NESSUS/EXPERT Menu System

49



"" CENTRIFUGAL MASS HELP SCREEN ""

Centrifugal mass effects account for the changes in centrifugal

inertia that result from deforming the strtc_Jm(i.e, follower effects/or

centrifugal loading). Cemdfugal mass effects are important in the

analysis of high-speed rotation mactdnMy.

When this o_on is selected, centrifugal mass stiffness effects due to

angular velooty are included at the inc_ment number specified.

Centrifugal mass has one parameter. Increment nurn_r at which

centrifugal mass stiffness effects are to be included.

The angular velocity is defined with the DISTRIBUTED LOAD data

input.

The axis about which the angular velocity occurs is defined with the

BODY FORCE data input.

Figure 5.2 Help Screen for Element Connectivity
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centrifugal mass option is appropriate and the expected consequences.

The help screen, Figure 5.2, describes the centrifugal mass option and

confirms the input format.

5.1.3 ErrorChecklng

Finite element methodology by itself is a complicated task and often

requires a large amount of data for realistic engineering problems. A

large amount of engineering time is often spent debugging input data of

a finite element model. In addition, the NESSUS/FEM probabilistic

finite element program contains new technology developed explicitly for

probabilistic finite element analysis. Thus, not only are the data

requirements expanded, but even knowledgeable deterministic finite

element users will not be well versed in many of the options in

NESSUS/FEM. Therefore, one of the requirements of NESSUS/EXPERT is to

analyze the input data for errors and allow corrections in the

interactive mode. Wasted engineering time and computer time while

iteratively debugging the input data is eliminated.

NESSUS/EXPERT performs error checking on several levels to insure a

correct input deck. For example, if material properties are being input

for an elastic isotroplc material, the user must enter: beginning node,

ending node, elastic modulus, and Poisson's ratio.

As an initial check, NESSUS/EXPERT makes sure the correct number of

entries have been made; in this case four entries. On the next level,

the value of the material properties is checked for physical sense. For

example, the elastic modulus must be positive and Poisson's ratio is

bounded by the limits -I and +1/2.

If an error is detected at this level a descriptive error message is

printed and the user is reprompted. Error checking at this point is

within a single keyword - namely material properties. NESSUS/EXPERT

also provides error checking between keywords. For example, if forces

are input for nodes that do not exist, NESSUS/EXPERT will compare the

nodal data in the loading module with the nodal data in the coordinates

module. Error checking across keywords is performed only when leaving a

keyword because sometimes a large amount of data must be checked. If an

error is detected the undefined node numbers are identified and the

user has the option of ignoring the error message, reentering the data,

or defining the new nodes. A NESSUS/EXPERT error screen is shown in

Figure 5.3.

A final level of error checking and warning messages is performed when

the user attempts to build the NESSUS/FEM input deck from the

NESSUS/EXPERT input. All high level checking between keywords is

performed and appropriate messages issued.

5.1.4 Language Implementation

Previous reports have discussed the evolution of the NESSUS/EXPERT

implementation language into a combination of FORTRAN and CLIPS, a C

language expert system tool. This combination is utilized to exploit
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*** CONSISTENCY CHECK FOR TURBINE BLADE ***

Forces are defined for the following undefined nodes.

107 108

TYPE C to enter coordinate data for the node(s) OR

F to change the force definition(s)

I to ignore the inconsistency for now.

Figure 5.3 Error Screen for Forces on Undefined Modes
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the strengths of each language. The present work has continued with the

Clips Fortran hybrid implementation. This language implementation has

allowed high-level decision making on one hand and low level data

checking and interfacing with engineering codes on the other.

5.1.5 Probabilistlc Input

In many real life engineering problems, probabilistic knowledge of the

random input variables is not known. The mean, standard deviation and

the probability density function PDF is required input for the FPI

program. The probabilistic response of a structure may be sensitive to

the PDF chosen. The probability data for a random variable may not

always be known; however, a distinction can be made between appropriate

and inappropriate choices.

A large amount of statistical data has been accumulated for various

random variables. NESSUS/EXPERT can offer the best known default

distributions and coefficient of variations for a random variable.

Table 5.1 shows a list of the default distributions and COV's that have

been gathered from engineering data and experience. Thus, if

statistical information is not known about a particular random variable,

NESSUS/EXPERT will provide a realistic choice.

Help screens and warning messages provide the user with additional

information. For example, if the user selects a Weibull distribution

for a loading random variable, a warning message "the Weibull

distribution is not generally recommended for loading random variables"

will appear. This list of recommended statistical data can be modified

for any random variable. For example, if good data on pressure

distributions on a turbine blade become available, the data can be

incorporated into the llst of recommended values. Thus, expert can

serve as a user-deflned repository of statistical data. This can aid

new users who are unsure of appropriate input data.

In addition, the menu structure for selecting probabilistlc input has

been defined and a preliminary version input in EXPERT.

The majority of the work has concentrating on implementing the

NESSUS/FEM model data into the menu system. As a result, a fairly

robust menu system is currently available for building the FEM models.

The majority of the keywords through NESSUS release 2.5 are implemented.

The NESSUS/EXPERT capabilities have been tested by running several

example problems with EXPERT. A diagnostics llst has been developed for

the expert system. The diagnostics have been split into high and low

priority items. The high priority items must be completed before

releasing the code. Although, many minor bugs were found the system is

a fairly complete implementation of the NESSUS keywords.

5.1.6 Limitations

One inconvenience of EXPERT is the length of time to load rules at the

beginning of an expert session. EXPERT consists of approximately 600

rules which must be loaded in at startup. This takes roughly 7 minutes
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Table 5.1

Default Distributions and COV's for

NESSUS Random Variables

VARIABLE

Young's Modulus
Poisson's Ratio

Shear Modulus

Density
Thermal coefficient
Yield stress

Geometry
Thickness

Temperature
Pressures
Forces
S-sect area

Inertia

Torsional constant

Springs

Naterial Orientation

Other

DISTRIBUTION

Normal

Normal

Normal

Normal

Normal

Wiebull

Normal

Normal

Lognormal

Lognormal

Lognormal

Normal

Lognormal

Lognormal

Lognormal
Normal

Lognormal

COV

.02

.02

.02

•02

.05

.07

•005

.O05

.05

.04

.02

.007

.02

.01

.02
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on a VAX. This is an irritating length of time if EXPERT must be

entered more than once. A Clips version containing compiles rules was

found to be limited to only 180 rules. Apparently, NESSUS/EXPERT is one

of the largest implementations in Clips.

5.1.7 Future Effort

NESSUS/EXPERT needs to be exercised on a variety of realistic

engineering problems to thoroughly test and debug the code. While the

menu structure is fairly complete it must be updated to reflect recent

changes in the NESSUS/FEM code such as harmonic excitation and random

vibration capabilities. The menu structure for probabilistic input has

been defined but has not been implemented. Also, other heuristics such

as selecting perturbation sizes and convergence criteria must be

determined and implemented.

5.2 PFEM

PFEM is a utility which automatically links the NESSUS finite element

program and the FPI fast probability integrator. The advantages are :

o user intervention is reduced.

o batch analyses are now possible.

PFEM will coordinate the analysis and data exchange between FEM and FPI

depending on the options chosen.

5.2.1 Capabilities

I) perform MVFO analysis on a range of nodes.

2) perform AMVFO on a single node. The AMVFO option will compute moves

based on MVFO results insert moves into NESSUS/FEM input file and

run NESSUS/FEM for each probability level.

5.2.2 Status

Previously, PFEM coordinated execution between the separate executables

NESSUS/FEM and FPI with a certain amount of system dependent code.

Because of the recent integration of the FPI code into the NESSUS/FEM

framework much of the PFEM code must be rewritten. The data exchange

and file handling mechanisms must be changed. Although the final

integrated package will be a much nicer program and be system dependent,

the integration has slowed development of the PFEM module.
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6.0 NESSUS BOUNDARY ELEMENT CODE DEVELOPMENT

6.1 Introduction

Analytical methods have been developed for reducing certain types of body

forces to equivalent boundary integrals. The first publication concerned

three dimensional body forces due to steady state thermal loading and due

to centrifugal acceleration [i]. This approach was then extended to the

axisymmetric problem [2]. Subsequently, [3] summarized this approach.

The limitation in the analytical approach is that many body force-like

problems can not be treated in the exact manner employed for the above

studies. Examples of these important problems include non-steady thermal

loading, vibration, temperature dependent properties, plasticity, etc. For

such problems, the body forces have been modeled using domain elements,

thereby voiding much of the BIE advantage of reducing problem

dimensionality.

Relatively recently, a new and very powerful approach was identified by [4]

which offers an alternative to the direct use of domain elements for these

classes of problems. The method, which they have called the dual

reciprocity method, uses global interpolation functions to replace standard

domain interpolations, a la finite elements. The dual reciprocity

formalism results in boundary integral equations that are approximately

equivalent to the domain integrals of the standard BIE formulation. They

have extended the method to transient dynamic problems [5].

Following this work of Nardini and Brebbia, Banerjee and co-workers [6,7]

have used the same approach, but in a different formalism. The formalism

draws very directly on the notion of particular integrals to the governing

equations. The formalism of particular integrals results in a clearer

understanding of the common features for a full range of body force

problems. The particular integral approach will therefore be adopted

herein.

6.2 Probabilistlc Boundary Element Analysis

The Probabilistic Boundary Element Program (PBEM) is an adaptation of the

boundary element code BEST3D to perform probabilistic analysis of

structures. The purpose of PBEM is analogous to NESSUS/FEM, that is to

obtain structural sensitivity data. The actual probabilistlc analysis is

done with FPI using the sensitivity data. The database connecting PBEM and

FPI is identical to that of NESSUS/FEM. Thus, the existing codes PREFPI

and FPI can be used without modification.

Initial programming efforts have focused on implementing the necessary

input formats, storage algorithms and perturbation algorithms for a variety

of random variables. In addition, an effort has been made to give the code

the same look and feel as the _ESSUS/FEM code wherever possible.

Currently, the method of obtaining the structural response to a perturbed

problem is through resolution although more efficient methods will be

examined for future implementation.
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A summary of the salient code features are:

o resolution technique used for perturbation random variables

o perturbation input format similar to NESSUS/FEM

o probabilistic BEM input format similar to deterministic BEM input

o identical database format as NESSUS/FEM

o coding for storing and retrieving the probabilistic data

similar to deterministic coding

Much attention has been paid to the look and feel of the PBEM code.

Wherever possible, input formats similar to NESSUS/FEM formats have been

used, such as the method of defining random variables and perturbations.

In addition, the method of defining the boundary element probabilistic data

is similar to the deterministic input format. The coding for storing and

retrieving the probabilistic data is very similar to the coding for

deterministic data. Typically deterministic routines were copied, renamed

and used for probabilistic data. The PBEM code dumps all data to a

database identical to the NESSUS/FEM database. Thus, the PREFPI program

can be used to retrieve data and format input files for FPI analysis. An

example problem of the probabilistic analysis to a beam under axial load

using PBEM is contained in Appendix G.

The current status of the PBEM code is:

_ANDOM VARIABI_E COMMENTS

MATERIALS

Elastic Modulus

Poisson' s ratio

Thermal

Coefficient

Dens ity

No temperature dependency

Multiple GMR's OK

GEOMETRY

Coordinates

BOUNDARY CONDITIONS

Displacement

Traction

BODY FORCES

Centrifugal

Multiple GMR's OK

Only I BC set

OK

RESULTS DUMPED TO IDENTICAL DATABASE AS FEM

o Resolution technique used for all perturbations.

o Any combination of presently allowed random variables OK.

o No time dependency.
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o Convenient random variable input.

o Perturbation definition similar to FEM definitions.

6.3 Domain Integral Formulation

6.3.1 Bettl's Theorem

The reciprocal work theorem is written first in terms of the stress

(a,l) and strain tensors E,[ for two solution states. The first state,

denoted by lower case Greek symbols, refers to the physical state for

which we desire the solution; the second state, denoted by upper case

Greek symbols refers to the fundamental solution [8] for the linear

elastic problem. Letting superscripts (T, E, P, 8) refer to total,

elastic, plastic, and thermal strains, we obtain the reciprocal strain

energy theorem in the form

/_ _.EdV-:, _'.IdV (6.1)
R> -- -- R>

In (6.1), <R> denotes the volumetric principal value integral. That

is, the volume integral extends over the entire region of interest, but

excludes the small sphere surrounding the point load singularity from

the fundamental solution.

The Reciprocal Work Theorem of (6.1) is easily proved for linear elastic :

materials in terms of Hooke's law

(6.2)

The elastic strain can now be written in terms of the total, and other,

strains as

(6.3)

The total strain in (6.3) may be written in terms of the displacement

gradient operator B as

ET.B-_

- - - (6.4)

E r= B'U

where u,U refer to the displacements for the physical solution and the

fundamental solution, respectively. Then the reciprocal work theorem

can be written as

.(8.u) v-J'(B..) dv-i,(_:- •dv
(6.5)
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6.3-2 Somigliana Identity

The reciprocal work theorem in (6.5) contains two integrals which can be

converted through the application of the divergence theorem to boundary

integrals. The divergence theorem poses the requirement that the strain

be continuous, and can be show to result in the following form of (6.5)

• s. ,> "s. u , ( ,÷ o (6.6)

The body force per unit mass, b, appears in (6.6) because of equilibrium

requirements, and the application of the divergence theorem

V-O+pbmO (6.7)

The terms in (6.6) which are written at the boundary of the region,

denoted S÷ S,, include the surface to the physical problem as well as

the surface to the small excluded sphere of radius _. The domain

integrals in (6.6) are required for equilibrium to be exactly satisfied

in the presence of non-elastic strains and body forces.

It can be shown that the left-hand-side integral over S, in (6.6) is

zero in the limit as _ _ O. The corresponding R/4S integral in (6.6) can

be shown to be £(p)-5 where 6 is the Kroenecker delta. The free term

that results is associated with the point load of the fundamental

solution, which is taken to he located at an internal solution point

p(_). Re-writlng eqn. (6.6) results in the well-known Somigliana

identity for the displacement at p(_)

_u'6"f,!'uas-f "'ras+f,__ ,,(£'+_e)'ldV+£.>Pb'UdV_ _ _ (6.8)

Equation (6.7) is a re-statement of equilibrium in that differentiation

of the Somigliana identity results in exactly satisfying the equilibrium

requirements, now in the presence of a body force, and inelastic

strains.

6.3.3 Boundary Integral Equation (BIE)

The BIE is obtained from Somigliana's identity by allowing the interior

solution point to approach the boundary, viz. p(_)_ P(x). Again from

[9], it is possible to determine that the point load term in (6.7) is

replaced by its boundary equivalent, denoted C, such that

u.c÷ f,£.TdS-[t.UdS+[__ _,- _ J<,>(c'+_')'XdV+ f<-_ _ ,. pb.UdV (6.9)

Equation (6.9) is the BIE for the formulation with body force and

inelastic strains. Clearly, the BIE is not strictly a boundary-integral

equation due to the presence of the domain integrals. The remainder of

this note deals with the issue of modifying the domain integrals into

equivalent boundary integrals.
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6.4 Reduction of Domain Integrals to Boundary Integrals
6.4.1 Outline of Procedure

The procedure for the domain integrals involving thermal and body force
loads is essentially the same. First, the domain variable is written in
terms of the Navier operator relationship for that domain variable. The
domain variable is then approximated by a global interpolation, which
allows the domainvariable to be approximated by the superposition of
relatively simple domainvariables. Finally, knowing the particular
solution of the problem, we can write a boundary integral equation for
the particular solution of the problem. The difference between the
original integral and the particular integral equation give us an
equivalent boundary integral without the domain terms.

The replacement of the domain variable by simple global interpolation

operators allows us to integrate the Navier operator for that problem.

The quality of the equivalent boundary integral is then based on the

quality of the assumed interpolation formulae for the thermal strain and

the body force loading term. In particular cases it is possible to

obtain exactly equivalent boundary integrals, as cited in Section 6.1.

The exact cases correspond to steady state thermal loading and

centrifugal acceleration body force loading.

The problem with the procedure is the ability of the global

interpolation functions to accurately match the physical variable. This

issue will be discussed in detail with examples in a later section.

However, the accuracy of the equivalent boundary integral is solely

dependent on the accuracy of the global interpolation. Unfortunately,

insufficient attention has been paid to this vital issue in the

literature; also, there seems to be little research into the development

of improved global interpolation schemes. This is in spite of the great

value of being able to replace the domain integrals by equivalent

boundary integrals.

6.4.2 Thermal Strain

We now seek to find a particular solution, W e to the Navier equations of

elastic equilibrium in the presence of thermal loading. Stress

equilibrium is giveD by eqn. (6.7), the stress-straln relation by (6.2),

and the strain-dlsplacement relation by (6.4), such that

| -2v

Let eqn. (6.10) be written symbolically as

N.u'-BVO-O (6.11)
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where _-a-(l*v)/(l-2v). The particular solution to (6.11) implies

additionalboundary displacements, uO(Q), and boundary tractions, {O(Q)

which must be considered along with the physical boundary conditions.

In general, we must consider an approximate solution to eqn. (6.11).

The usual manner is to model the domain integral using "finite elements"

and an assumed nodal interpolation of the temperatures.

For the current approach, the temperatures will be represented by

interpolation functions that are tied to the surface, and not to

internal nodes. In either case, the temperature field is approximate;

the nature of this approximation and its effect on the solution accuracy

will be discussed in Section 6.5.

We can now express a boundary integral equation similar to eqn. (6.9)

for the particular solution as

u,.c+ fsu_,.T_dS._{,.U_dS+ £. _,.ldV (6.12)

where _'- aS@. The tildes denote that the actual quantity has been

replaced by an approximation.

By subtracting eqn. (6.12) from eqn. (6.9), we obtain an equivalent

boundary integral equation of the form

Where u=u-u', !=t-t', and Ee is the error term given by

£o.£ (_o__,). ldV (6.13b)

To complete the procedure, we now require a particular solution to the

governing differential eqn. (6. ii).

The Helmholtz decomposition theorem for an arbitrary vector says that

the vector may be written as the sum of scalar and vector potentials as

u' = V_+ VX_ (6.14)

For the case of the particular solution to (6.11) we may take __-0

without loss of generality. In this case the Navier equations of

equilibrium become

(l-----_v)v2".aOl+v (6.15)

within an arbitrary constant of integration.

The critical question raised in the use of such particular solutions is

not their effect on the BIE formulation, but rather how one is to

represent such particular solutions. The standard methodology that is
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employed in such particular solution formulations is to replace the

known field (in this case, temperatures) by a simple, global

interpolation field, for example

(6.16)
_(q) = I K(q,Qj)_(Qj)

j-!

where _(q) is the temperature interpolation q(_), _(Q) is a set of

unknown coefficients, and K(q.Q) is a global interpolation function.

The usual method is to take the global interpolation function to be a

simple function

K(q, Q) - Ro[ 1 - r(q,Q)/go] (6.17
)

where r(q,Q) is the distance between the interpolated point q and the

boundary point Q, and R o is a scale constant such as the maximum size of

the region. The quality of this interpolation function for generalized

thermal loads is discussed in Section 6.5.

When the simple form of the interpolation field (6.16) is used to

approximate the temperatures in the Navier eqn. (6.15), the form for the

potential function _(q) can be found

*(q)= l_vja_.=X(q,Q)_(Q)

where the integrated global interpolation function is given by

(2 r(q'Q)_r(q'Q)Z (6.19)

The corresponding displacement field for (6.19) is given from (6.12) as

u'-(' vLN ( 3r(qQ) (6.20)
where _-_ is the Cartesian distance from Q(_) to q(_). Equation (6.20)

is then the solution to eqn. (6.11), for the assumed global

interpolation of temperatures. Stresses and surface tractions may then

be derived from the displacement terms in eqn. (6.20).

The derived particular traction and displacement solutions to the

approximation for eqn. (6.11) are to be substituted into eqn. (6.13a).

Assuming that the error is zero, eqn. (6.13a) results in two coupled

sets of boundary integral equations, one known and one unknown.

Following discretization, the set of BIE matrix equations is solved in

the normal fashion.

Other terms may need to be included in the global interpolation field

including a linear field. Modeling very early transients will likely

require the use of a one dimensional temperature field of the form e-x_,

where _ is the inward normal distance from the free surface and k is the

appropriate inverse-distance variable in terms of the heat conduction

properties of the medium. Such additional terms are expected to improve
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the nature of the global interpolation process, thereby improving the

accuracy of the equivalent boundary integral for the transient thermal

loads.

6.4.3 Body Force Load

The body force that will be considered in the current formulation is for

modal vibration of the body. Gravitational and rotational inertia body

forces can be treated exactly by boundary integrals, as shown by [i].

The Navier equation of equilibrium for the body force load can be

expressed as

N.ua+pb.O (6.21)

As before, we can express the equivalent boundary integral equation for

this case as

;_.C+ fs.n.TdS, fs{..U__dS+ £___ (6.22)

Where u-u-u _. !-{-{", and the error terms is given as

E"-/< p(b-5).UdV (6.23)
-- £>

The challenge, of course, is to find a suitable particular solution to

the operating differential eqn. (6.21) for a given body force problem.

In general, we can say that no generalized solution exists except for

simple problems such as rotational inertia loading.

The problem of interest in the current note is that for normal mode

vibration, where

pb.pn2£ (6.24)

for which the particular solution from (6.21) is sought

N.ud÷p_2u. 0 (6.25)

If we now replace the actual displacement field, _, by an approximate

interpolation over the domain, as given by

N (6.26)

a_- _ K(q.Q,)__"(Q,)
l'l

then a particular solution for ud can be found from (6.25) as

N (6.27)

u__= pn 27 c Cq.Q j).+__(Q,)
i-I

The form of the particular solution G__can be found by inspection to be

given by the polynomial

G_- C,(6_r(q. Q)2 + y® y)+ C26_r(q0 Q)_ + c3F(q. Q)y ® y (6.28a)

For the interpolation function given by eqn. (6.17),
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_2 (l-2v)Ro
Cl = -O_ ....

(14- 16v)_

C2=p_2 (ll-12v)
144(1-v)_) (6.28b)

Ca = _p_2 l
48(1-v)p

The ability of this interpolation to represent modal vibration

displacement fields is discussed in Section 6.5.

Again, now that the particular displacement solution is known, the

particular tractions can be obtained, and both terms substituted into

eqn. (6.22). Treating the error as having zero contribution, the

boundary integral equation is factored into the standard terms and those

with the particular solution.

6.4.4 Temperature Dependent Material Properties

For most applications in the design of thermally loaded structures, such

as for gas turbine engine structures, the material properties are

temperature dependent. Temperature dependence introduces

inhomogeneitles in terms of the boundary integral equation formulation

that also appear as domain integrals.

Consider Hooke's law for the elastic materialwith temperature dependent

shear modulus and Poisslon's ratio _(O) and v(8)

2pv (6.29)

- l-2v- -

where e - tr _. If we assume that the two material properties _(e) and

v(8) can be written in terms of an average or nominal constant plus the

thermal deviation from this constant then

0- = 12p°v°6e+-2v-'---_- 2P°_ + 2p(e)v(e)6e+2p(e)El- 2vCe) - - (6.30)

The resulting form for Hooke's law can then be simplified as

£. _o._+_,(e).£ (6.3l)

The reason for separating the constant terms from the temperature

dependency is to allow the direct use of Betti's reciprocal work theorem

in formulating the boundary-lntegral equation. Beginning with the

domain formulation, we obtain

i.(O_- 0-')'EdV = I_ Ei- 7dV (6.32)

where the initial stress due to the material inhomogeneity oi is given

from (6.31) as

o' = C'(e)-_ (6.33)
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Application of the equilibrium requirement on the stress field in (6.31)

results in the following Navier equation of equilibrium for the

displacement field in terms of the inhomogeneity field

N'u I + V'o I " 0 (6.34)

The inhomogeneous Navier equation appears in the same form as that for

the dynamic body force result (6.25). Consistent with the previous

approach, the term for the gradient of the inhomogeneous stress term.

_'o', would be replaced by a global interpolation function for which a

particular solution to (6.34) could be found. The resulting

substitution would approximate the inhomogeneous stress state, as

follows

V.o' - v-CC_'Ce)-c) (6.35)

The global interpolation function in (6.35) must be evaluated by fitting

the terms to values of the gradient operator

V.(C_(O).¢_) . (V.C,)._+C_(8).(V.__) (6.36)

In order for (6.36) to be evaluated it will be necessary to specify the

gradients of both the local temperature and local strain at each

interpolation or collocation point. Neither of these two gradient

operators is generally computed in heat conduction or in stress analysis :

modeling. Thus, it will be necessary as part of implementing (6.36) to

fit each field to its own global interpolation, from which the gradient

can be computed

V.C'(O) - V-(,._K(q.Q,)-__C(Qj))

(6.37)

V.__ - v.(,.Z K(q.Q,).__'(Q,))

The second approach, and the one reported herein, is to replace the

product term by the global interpolation

N (6.38)
_'..C'(O).__ " Y'r(q.Q,)"t,t(Q,)

j-!

The global interpolation in (6.38) is then operated on to approximate

the second term in (6.34). The particular solution for u' can then be

found as

. (6.39)
a_'- Z£(q.G)-__'(0,)

j-i

where

_ c -Y
G(q. Qj)- {C,+r(q.Q,)Ca}6@y+{Cz+r(q. Qj)C4}6@y + ar(q. Qj )

and

(6.40)
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(6.41)

The resulting interpolation for d_ is of lower order than the previous

interpolations, in that the global function K(q,Qj) is differentiated

prior to finding the particular solution to Navier's equation for this

problem (6.34). The accuracy of the domain integral approximation is

degraded some, as discussed more fully in Chapter 4.

Using the particular integral solution, we obtain an equivalent boundary

integral equation of the form

ffi.!dS- f, .gdS÷ £' (6.42)

_ere _-u-u t, i-{-{ l, and the error term is

-,.f, (_'-_'). EdV (6.43)£,
f

Solution of the above equation requires iteration in that the boundary

interpolation variables _(QI) in (6.38) depend on the solution variable

E.

6.5 Numerical Results

6.5.1 The Form of the Global Interpolation Funct£on

The boundary integral equations given by (6.13a), (6.22) and (6.42) are

exact statements of the body forceboundary value problems. The

numerical implementation of these equations, however, requires both the

surface and volume dlscretization unless the error terms are assumed to

be zero; in that case, the solution requires the discretlzatlon of the

surface only. The error terms are given by the volume integrals

involving the difference between the actual and assumed body force

variable times appropriate kernels as indicated by eqns. (6.13b), (6.23)

and (6.43). Therefore, the accuracy of the solution depends on how well

the assumed field approximates the actual body force field. In the

earlier works of other authors [4-7] and in the present work, the body

force fields are approximated by a global interpolation function given

by eqns. (6.16) and (6.17). The choice of the global interpolation

function is restricted by two conditions. The first requirement is that

the function must be able to approximate the given field adequately,
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the second condition is that the function must be such that we can find
a particular solution to the governing differential eqns. (6.11), (6.24)
and (6.34).

Figure 6.1 showsa mapof the interpolated temperature field at the base
of a cube subjected to constant temperature. The figure indicates that
the approximate field deviates from the actual field by up to 15.6 %.
However, the fields match exactly at the nodes, thus, the error in
global sense is minimized by a suitable selection of interpolation
nodes.

6.5.2 Application to Thermal Loading

For validation purposes, we analyzed a fully restrained cube subjected
to a uniform temperature field. The cube was modeled using 6 quadratic
boundary elements and the temperature field was interpolated in terms of
the 20 boundary nodes of the elements. The stresses computedwere
within 0.0005 percent of the theoretical results indicating good
accuracy.

To further assess the validity of the procedure, we selected a hollow

sphere with external radius to internal radius ratio of 2. A 22.5 °

segment of the body was modeled using 22 quadratic boundary elements as

shown in Figure 6.2. For the description of the temperature field by

the interpolation function, we considered all 68 boundary nodes that

coincide with the surface discretization.

We considered a linear temperature variation in the radial direction

given by 8 - 10r, where r is the distance from the center. Analytical

solution corresponding to radial temperature variation can be found in

Boley and Weiner [i0]. Figure 6.3 shows a comparison of the theoretical

and computed values of the radial displacements along the radius of the

sphere. These results show excellent agreement between the theoretical

and computed values. The normalized hoop stress along the radius in

Figure 6.4 also indicates excellent agreement between the theoretical

and computed values. These results confirm the validity of the

procedure as well as indicate the ability of the global interpolation

function to approximate the linear temperature field adequately in a

global sense.

To examine the appropriateness of the interpolation function for higher

order variation of temperature fields, we imposed quadratic variation,

given by O - I00 + 10r + r 2, and cubic radial variation, given by 8 -

i00 + 10r + r 2 + 0.2r 3, of temperatures to the spherical model. The

results for hoop stresses shown in Figure 6.5, for the quadratic

variation of temperature, and in Figure 6.6, for the cubic variation of

temperature, again indicate excellent agreement between the theoretical

and computed values. The accuracy of these results provide a good

indication of the ability of the global interpolation function to match

higher variation of body force field in a global sense.
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Figure 6.1 Error of Interpolated Temperature Field at

the Base of a Cube Subjected to Uniform

Temperature of [00
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Figure 6.2 BEM Map for Hollow Sphere
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6.5.3 Application to Vibration Response

The free vibration analysis part of the code was verified by comparing

the mode frequencies of a cantilever beam obtained by using finite

element and boundary element procedures. The free-vibration analysis

procedure is essentially identical to the work reported previously

[4,6], however, the displacement particular solution given by eqn.

(6.28) includes one additional term compared to the corresponding

solutions reported previously [4,6].

Table 6.1 shows the vibration modes for the cantilever model shown in

Figure 6.7. These results indicate that the inclusion of additional

term does not alter the computed values, however, the cost is increased

due to the need to compute this additional term.

Table 6.1

Vibration Modes for the Cantilever Model

Mode I Mode 2 Mode 3 Nodes/ CPU (set)

Elements VAX 8700

Beam Theory 472 708 4507

BEST3D [6] 523 945 4028 44/14 282

PBEM (current) 523 946 4024 44/14 323

To further investigate the accuracy and convergence characteristics of

the procedure, we selected two boundary element models, Figure 6.8, and

two finite element models, Figure 6.9. Table 6.2 compares the first

five modes of vibration for the cantilever models. The computed values

show that the results were improved by the use of finer meshes; the

results using the finer boundary element map seems to give the best

results at somewhat higher computational cost.

Table 6.2

First Five Modes of Vibration for the Cantilever Models

Mode I Mode 2 Mode 3 Mode 4 Mode 5 Nodes/ CPU

Elements (set)

VAX 8700

BEM-I 2686 5441 13485 16810 25382 44/14 352

BEM-2 2810 5333 12736 16255 24523 86/28 1676

FEM-I 3033 5449 13191 17227 25141 195/96 158

FEM-2 2885 5354 12778 16224 24522 1125/768 801
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6.5.4 Application to Temperature Dependent Properties

To validate inhomogeneous material procedure, initially we considered a

cube with linear variation of Young's modulus in one direction subjected

to a uniform tensile force applied in the same direction. The cube was

modeled using 6 quadratic boundary elements and for the interpolation of

the initial stress field due to material inhomogeneity we used all

boundary nodes of the elements as shown in Figure 6.10. The results for

tensile stresses were in error of up to 16 percent. To see the effect

of additional interior points on interpolation, we used 20 interior

points in addition to the 20 boundary points used before. The use of

interior points for the interpolation reduced the maximum error for

stresses to about 6 percent. The reason for higher error for the

material inhomogeneity case than the results obtained from a similar

model for the thermal problem can be seen from the fact that in the

thermal and free vibration analyses, only one field was approximated by

the interpolation function. In the inhomogeneous material analysis,

initial stresses are defined as the product of the strains and the

difference in material properties, eqn. (6.33). While the stresses

within the cube were constant, the strains were not since the Young's

modulus varied. The interpolation function, therefore, was used for the

approximation of the product of varying material properties and varying

strain field.

To further investigate the procedure for temperature dependent material

properties, we modeled a hollow cylinder with an external radius to

internal radius ratio of 2. Figure 6.11 shows the BEM map used for this

problem. The cylinder was subjected to a linear variation of

temperature field along the radius, given by e - 10r. It was assumed

that the Young's modulus varied linearly with the temperature given by E

- Eo(I-i048). The normalized hoop stress along the radius using the

current procedure is compared to the corresponding results using the

finite element method in Figure 6.12. These results indicate good

agreement between the boundary element and finite element procedures.

6.6 Current Status and Future Efforts

The major part of the past year was mainly spent on developing a boundary

element procedure for body force problems using a surface transformation

technique that eliminates domain modeling. The computer code for thermal,

free-vibratlon, and temperature dependent material problems has been

completed. A preliminary verification of the code and the procedure has

been established as indicated by the numerical examples given in the

previous section. An additional particular solution for known thermal

gradients may be incorporated in this code which would effectively

eliminate large number of interior collocation points. As part of the next

year effort, the particular solution corresponding to high thermal

gradients will be included in the computer code.
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Figure 6.8 BEM Maps for Cantilever Beam
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a) FEM Map 1

b) _ Map 2

Figure 6.9 FEN Maps for Cantilever Beam
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• Boundary interpolation

+ Interior Interpolation

Figure 6.10

BEM MaP of Cube with Interior Nodes for Interpolation
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Figure 6.11 BEM Map for Hollow Cylinder
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While the results reported are encouraging, the role of interpolation

function in the accuracy of the solution needs further investigation. The

investigation on the selection of interpolation function which was partly

established in the past year will be concluded in the next year.

The examples presented in the previous section established the validity of

the procedure for body force problems. The next year effort will focus on

solving specific problems identified by the project, such as the turbine

blade model. Before the application of the procedure to large-scale

problems, the efficiency of the computer code needs to improved. As

indicated in the report corresponding to the validation of the BEST3D code,

the BEM procedure for some class of problems is not as efficient as the FEM

procedure. In most instances, a large part of the computational effort was

spent on the evaluation of discretized surface integrals. The numerical

implementation procedure used in the current code is essentially identical

to the technique used in the BEST3D [II] computer program except the

inclusion of a variable transformation procedure. The variable

transformation procedure implemented in the current code slightly improves

the efficiency of the numerical integration effort, however, the results do

not seem to be as reliable as the sub-segmentation scheme results. An

improved numerical implementation is necessary to make the BEM solution

tool attractive to a wide-class of problems. Investigation into the

development of improved numerical integration procedures will be pursued as

part of next years effort.
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7.0 NESSUS CODE VALIDATION STUDIES

7.1 Overview of Code Validation Effort

To validate the NESSUS code, a set of problems were chosen to exercise

various feature_ of the finite element and probabilistic modules. The

validation problems were selected on the basis that (I) a closed-form

analytical solution could be generated for the structural response and that

(2) an "exact" probabilistic solution could be generated from this

closed-form solution, either analytically or through Monte Carlo

simulation.

A plan for validating the NESSUS probabilistic finite element code was

included in the PSAM First Year Annual Report (Vol. III, Section 7.4). The

original plan consisted of nine validation problems. The number of the

problems has increased to fourteen (see Table 7.1) to test other

capabilities of the NESSUS code.

During FY'87, eight validation problems were successfully solved. These

include case numbers i to 3, 5 to 7, 9 and i0. The results were summarized

in the PSAM Third Year Annual Report (Vol. I, Appendix A).

During FY'88, four validation problems have been solved. The descriptions

for these four problems and the problems to be completed in FY'89 are

listed in Table 7.1. Other validation problems may be added as needed.

More detailed summaries of the validation cases completed during FY'88 are

documented in Appendix F using a standard format designed to include all

the required input data and information. In addition to validating the

code, a new user can use these problems to gain confidence that he is using

the code correctly.

For each problem, several levels of accuracy were obtained by using the

NESSUS code and the probabilistic algorithm. As a first step, a mean-based

perturbation database was generated to generate a linear response surface.

The result is the MVFO solution.

In the second step, one or several probability levels were selected. For

each probability level, the MVFO solution was then improved by replacing

the center of perturbation (the "deterministic state" in the NESSUS/FEM

module) by the most probable points generated using the previously

established linear response surface. The "new" deterministic solution was

then paired with the "old" MVFO probability estimate to form the AMVFO

solution.

The probability estimates were further improved by using the perturbation

solutions around the updated point. This procedure is called the "first

iteration." The solution can be further improved by using additional

iterations until the solution converges. The NESSUS probabilistic analysis

algorithms are documented in [3].

In all the validation problems studied, it was found that the

first-iteration solutions were sufficiently accurate and that even the

AMVFO solutions provided good accuracy for most cases. Therefore,

additional iterations were not conducted.
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In the presentation of the results, an 'adjusted exact' CDFwas defined for
each problem. The adjusted solution was defined to match the analytical
deterministic-(using meanor medianvalues) solution with the FEMsolution.
The adjusted CDFprovides a more reasonable reference to judge the accuracy
of the NESSUS_robabilistic solution.

In generating the CDFs, the analysis concentrated on only one of the tails
of the distribution, depending on which tail was considered more important
in a reliability design.

Whenclosed form probability solutions are not available, exact solutions
were obtained by using Monte Carlo simulation. The "exact" solutions were
comparedwith NESSUSresults to validate the code as well as the solution
algorithm.

7.2 Validation Results Completed in FY'88

?.2.1 Analysis of Rotating Beam

This problem is similar to validation case 5 [2] which uses plate finite

element. The present problem uses Timoshenko beam elements. The

rotating beam, as illustrated in Figure V-I of Appendix F, was modeled

using 20 beam elements. There are five random variables: Modulus of

elasticity, length, thickness, width, density, rotational frequency and

inside radius.

The response functions consider the tip axial displacement and the first

bending frequency. The analytical solutions were derived using

Galerkin's method.

The NESSUS/PFEM module has been used successfully to obtain the AMVFO

solution at several selected probability levels. The agreement between

the NESSUS solution and the 'adjusted' exact solution is excellent.

7.2.2 Static Analysis of Spherical Shell

This validation problem (case 8) considers a spherlcal shell as

illustrated in Figure vg-I of Appendix F. This problem validates the

NESSUS's shell modeling capability. The FEM model uses 200 shell

elements (NESSUS element type 75) including 180 four-node elements and

20 collapsed, 3-node elements. The analytical deterministic solution

for the maximum stress (at fixed base) is available. The difference

between the theoretical solution and the NESSUS solution is 3%.

There are two random variables: internal pressure and thickness. By

assuming that both random variables are lognormally distributed, the

response is also a lognormal random variable. In solving the

probabillstic analysis problem, the convergence limit must be small

enough to force at least one iteration in the NESSUS perturbation to

generate a correct perturbation solution. Figure V8-2 in Appendix F

shows very good agreement between the 'adjusted exact' solutions and the

NESSUS AMVFO solutions,
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7.2.3 Buckling Analysis

This problem considers the critical buckling pressure of a thin shell

under uniform external pressure as illustrated in Figure VII-I. The

goal was to establish the CDF of the critical pressure.

The FEM model uses 40 four-node shell elements. There are two random

variables. Based on the analytical solution and the distribution

assumption, an exact CDF can be obtained.

The MVFO and the AMVFO solutions were obtained. Figure VII-2 clearly

shows that the NESSUS AMVFO solution agrees very well with the adjusted

solution even though there is a 11% difference between the analytical

solution and the FEM solution, computed at the median values of the

random variables. This suggests that the response variable

sensitivities are approximately the same for both the analytical and the

FEM models.

The fact that the adjusted exact solutions match well with the NESSUS

solutions suggests that the characteristic of a tail distribution (i.e.,

the 'shape' of a tall distribution) may be preserved if the physical

characteristics (e.g., the response sensitivities) are essentially

correct. This validation result suggests a strategy for efficient CDF

approximation for complicated structural components. For example, it

may be possible to use a coarse (but reasonable) FEM model to establish

the shape of the tall distribution, then use a refined FEM model to

calibrate (i.e., shift) the CDF using a deterministic solution.

7.2.4 Random Vlbratlon Analysls of Beam

In this validation problem, a cantilever beam is subjected to random

base excitation. The random variables include the modulus of

elasticity, material density, damping factor, length, thickness, width,

acceleration spectral density and cutoff frequency. The acceleration

spectral density is modeled as a truncated white noise with cutoff

frequency properly selected to excite, approximately, only the first

mode. The response function considers RMS (root-mean-square) of the tip

displacement. The finite element model, the random variables definition

and the probabillstlc results are included in Appendix F. The agreement

is excellent between the NESSUS probabilistic result and the adjusted

'exact' solution based on the Monte Carlo simulation.

7.3 Validation Plans for FY'89

According to the previous validation plan (see Table 7.1), there are

two random vibration problems left. In addition, three new validation

problems are proposed to validate transient and nonlinear capabilities.

Descriptions of these planned problems are given in the following. Other

problems may be added as necessary.

7.3.1 Random Vibration Analysis of Cylindrical Shell (Case 13)

This problem considers a cylindrical shell subjected to a random uniform

ring loading at a section of the shell [4].
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7.4

[1]

[2]

[3]

[4]

IS]

[6]

[7]

[8]

7.3.2 Random Pressure Loads on Plate (Case 14)

The goal of this validation case is to validate the NESSUS's capability

to solve random pressure field problems. In this validation case, a

plate is subjected to a random pressure field [5].

7.3.3 Elastic Response of a Pulse-Loaded Beam (Case 15)

This problem considers a simply supported beam subjected to a uniformly

distributed pulse-load. The transient response (maximum displacement)

will be considered in the response variable [6].

7.3.4 Elastlc-Plastlc Static Response of a Beam (Case 16)

This problem is similar to the previous problem except the load will be

gradually applied up to beyond yielding of the beam. Perfect plasticity

will be assumed [7].

7.3.5 Elastic-Plastic Response of a Pulse-Loaded Beam (Case 17)

The previous pulse-loaded beam problem (Case 15) will be extended to

consider elastic-plastic transient response [8].

References

"Probabillstlc Structural Analysis Methods (PSAM)," ist Annual Report,

NASA Contract NAS3-24389, Vol. III, Section 5.

"Probabllistic Structural Analysis Methods (PSAM)," 3rd Annual Report,

NASA Contract NAS3-24389 Appendix A.

Y.-T. Wu, O.H. Burnside, and T.A. Cruse, 1988, "Probablllstic Methods

for Structural Response Analysis," Presented at the ASME/SES Summer

Meeting, California, Published in Computational Probabilistic Methods,

W. K., Liu et al. eds., AMI)-Vol. 93, ASME, pp. 1-14.

I. Ellshakoff, A.Th. van Zanten, and S.H. Crandall, 1979, "Wide-Band

Random Axisymmetric Vibration of Cylindrical Shells," Journal of

Applied Mechanics, 46.

I, Dyer, 1959,'"Response of Plates to a Decaying and Convecting Random

Pressure Field," The Journal of the Acoustical Society of America, 31.

W. Nowackl, 1963, Dynamics of Elastic Systems, John Wiley & Sons,

Inc., New York.

W. Prager, and P.G. Hodge, Jr., 1968, Theory of Perfectly Plastic

Solids, Dover Publications, Inc., New York.

P.S. Symonds, "Plastic Deformations of Pulse-Loaded Structures - An

Elementary of Estimation Techniques," Private Communication.

87



8.0 NESSUSCODEVERIFICATION STUDY

8.1 Introduction to Probabilfstic Frequency Analysis of a Turbine Blade

The NESSUS verification studies in FY'88 were directed towards the linear

dynamic analysis capabilities. The first verification application of

NESSUS' dynamic analysis capabilities was the probabilistic frequency

analysis of a typical space propulsion system turbine blade. The

variations in the frequencies of the first few modes of the turbine blade

must be monitored and controlled to avoid resonance conditions. This can

occur due to the periodic excitation forces generated by disturbances to

the gas path generated by upstream nozzles and struts. The methodology for

determining the probabilistic frequency response is very similar to that of

obtaining probabilistic response of static response variables. Since the

frequency response function can by highly nonlinear, it requires special

precautions by the user to validate the results obtained.

8.2 Initial Verification Studies For the Frequency Computation

The purpose of the initial verification studies was to verify the NESSUS

frequency results with results obtained from other programs and also to

check the performance of perturbation based frequency extraction alogrithm

as implemented in NESSUS. It was also the purpose of the initial

verification studies to check the correctness of material orientation

effects as implemented in NESSUS for single crystal materials.

A 4x4x10 (Figure 8.1) cantilever beam element model was used to verify the

frequency analysis results for two material orientations. The anisotropic

material properties used are also shown in Figure 8.1. The NESSUS results

using Type 7 and Type 154 elements are compared with ANSYS results in Table

8.1 for two material angle orientations. For the identical formulation of

Type 7 isoparametrlc element, both programs give identical results.

However, it is known that Type 7 elements are excessively stiff and

selective reduced integration schemes are inappropriate for anisotroplc

materials. The enhanced continuum element Type 154 is much more flexible

and is capable of representing pure bending modes accurately. Thus, the

NESSUS results are in closer agreement with ANSYS results when compared

with an element formulation containing bubble functions.

The next phase of initial verification studies were directed towards

obtaining the frequencies for the perturbed system. There are two options

available in NESSUS to extract elgenvalues and eigenvectors for the

perturbed system. In one method, the subspace iteration technique is

simply applied to the perturbed system with initial trial elgenvectors as

that obtained from the deterministic structure. In the second method, an

iteratlve procedure is used to obtain the eigenvalues and eigenvectors from

the subset of modes of the deterministic system. Both the procedures were

applied to a perturbed system, using the simple cantilever beam model as

well as using a large turbine blade model (Figure 8.2). The material

overtation angle was used as the perturbation variable. The results of the

perturbation of I0 degrees and 2 degrees material orientation angles are

shown in Table 8.2 and Table 8.3 respectively for the simple beam model.
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The larger angle perturbation was initially tried as the amount of change

in frequency was only about 5% for I0 degree material orientation

perturbation.

The results indicated that the perturbed procedure took about as much as

95% of the resolution method with no convergence for certain vectors.

There was also significant percentage differences in the sensitivity

information for larger angle perturbation. In order to verify whether the

above conclusions are also applicable to larger models, a turbine blade

model which was used in earlier probabilistic finite element static

analysis was used in the frequency extraction exercise. The model is shown

in Figure 8.2 and the details of the model and the results are shown in

Table 8.4. The results supported the conclusion that the marginal increase

in cost using resolution procedures are preferable as they obtain more

accurate sensitivities and convergence characteristics are much more

predictable. Thus, further probabilistic frequency analysis verification

exercises used the resolution procedure,

8.3 Probabillstlc Frequency Analysis of Turbine Blade

Experience in verification exercises using the turbineJblade model shown in

Figure 8.2 and the results reported in Table 8.4 demonstrated the high core

demand due to incore solution capabilities implemented in NESSUS. This is

particularly so in dynamic analysis as stiffness, mass and damping matrices

are stored entirely in core. This may not be a hindrance for dynamic

analysis of large models using NESSUS as machines with 16, 64 and 256

million words of high speed memory may soon be widely available. However,

it can be serious a problem in running NESSUS in small core machines,

especially dynamic analysis. Further, experience with virtual machines

indicate excessive paging for large sized models. In general, a single

refined model as shown in Figure 8.3 is desirable for use in static

analysis, frequency and response analysis and fatigue life determination.

However, due to the core demand a coarser model shown in Figure 8.4 was

used for probabilistic frequency analysis. Further, when probabillstic

methods are used in the initial design phase to improve or estimate

reliability, coarser models are adequate.

The random variables and the assumed statistical parameters are shown in

Table 8.5. The analysis considered the variations in material axis

orientations, material elastic constants and geometric variations. The

material axis variations are typical for cast blades observed from

inspection data for dlrectionally solidified blades. The variations in

elastic constants were mainly obtained from expert opinion. Geometric

variations were introduced in the analysis through variations of the

spatial location of the blade with respect to stacking axis. It has been

observed that for cast blades with a machined flrtree, the majority of the

variations occur during machining operations in the form of variations in

geometric lean, tilt and twist angles. Thus, the geometric random

variables are used in the analysis procedure as rigid body shift of the
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blade with reference to the turbine radial line. The variations in the

mass of the blade observed in practice were introduced as variations in

mass density.

In the probabilistic frequency analysis of turbine blade reported in this

study, the stress stiffening effects have been included. The stress

stiffening effect is small for short and stiff blades such as the ones used

in this study. However, the stress stiffening effects were included to

capture the effect of rigid body geometry shifts on centrifugal stresses

and thereby frequency due stress stiffening.

The analysis procedure used in this study used the mean value first order

method and the advanced mean value first order method implemented in

NESSUS/FPI. For the mean value first order method one deterministic and

ten perturbation runs were made for the ten random variables considered.

Each perturbation case for modal analysis was preceded by a corresponding

perturbation case for static analysis to obtain the correct initial

stresses. In summary, one deterministic static analysis plus one

deterministic modal analysis followed by ten perturbed static analysis and

ten perturbed modal analysis were conducted to obtain mean value first

order solutions. All the above cases were made in a single computer run.

The results of the deterministic modal analysis are shown in Figure 8.5

through Figure 8.7 in the form of contour plots.

Perturbation about the mean value were obtalneduslng NESSUS/FEM and

NESSUS/FPI was used to obtain the first estimate of the distribution of

frequencies uslngMVFO method. This is displayed in Figures 8.8 through

8.10 under the legend MVFO.

The probabillstlc sensitivities obtained using MVFO method is tabulated in

Table 8.6 for the first modes of interest. The results point out the

elastic material property variations, either due the material angle

orientation or the variations in the properties themselves contribute most

to the variations in the frequencies of the blade. It further points out

that the varlations_in primary material axis orientation plays a dominant

role in Mode 1 and Mode 2 while the variations in shear modulus and

secondary axis orientation play a dominant role for variations in Mode 3.

The effect of these dominant random variables on mode shapes is also of

interest. Figures 8.11 through 8.13 show the respective mode shapes for

the dominant random variable perturbed by one standard deviation. It is

seen that there is no significant change in mode shapes. The results of

the estimate obtained using MVFO method are also compared with operational

experience for similar but different set of blades in Table 8.7. The wider

variation for Mode 3 observed in the experimental data can be attributed to

the directionally solidified sample blades for which the secondary axis

orientation was not controlled. The analytical results will be compared in

the future with single crystal blade test samples where all the material

axis orientations are better controlled and test data becomes available.
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Improved estimates to the distributions were obtained by using ADMVFO

method where the design points were successively moved for the seven point

cumulative distribution function. The ADMVFO method results are displayed

in the same Figures 8.8 through 8.10. While variations from the linear

response surface assumption is small for mode 2 and mode 3, the deviation

is significant for mode I. It is also observed that the first mode of the

turbine blade frequency exhibits a truncated distribution in the lower tail

region. Further it pointed out the possibility of having more than one

Most Probable Point (MPP) in the probability region of interest with the

response surface being nonlinear concave or convex function. This is due to

the cyclical nature of the material orientation effects on the elastic

properties of the material in the primary directions of bending of the

blade. Additional exercises using the suggested ADMVFO method with

iterations resulted in obtaining different most probable points during

successive iteration. This resulted in constructing a simple model and

exercising it for a nonmonotonic response surface. The details of this

study is reported below. Since the material orientation angles are the

random variables that can cause nonmonotonic response surface, a simple

cantilever model Figure 8.14 was constructed and exercised with the three

material orientation angles as random variables. For mode i, the primary

material axis orientation is the dominant variable and its effect on

response surface is schematically shown in Figure 8.15. The results from

the MVFO method and the uncorrected results from the ADMVFO method are

shown in Figure 8.16. The results from ADMVFO method as shown are invalid

as the cumulative distribution function is not increasing monotonically.

The modified monotonically increasing CDF is obtained by adjusting the CDF

curve for probabilities calculated in the lower tail region as shown in

Figure 8.16. This exercise pointed out the additional constraints that

must be coded when FEM and FPI packages are tightly coupled to

automatically produce an accurate cummulative distribution function using

ADMVFO method.

8.4 Dynamic Analysis Solution Strategies for Systems Subjected to

Multlsupport Excitation

Most of the space propulsion duct components are attached to the engine

and/or vehicle structure at multiple support points and are subjected to

shock and vibration from more than one source at these attachment points.

These components are in general, modelled as systems subjected to

multisupport random or harmonic excitation. The governing equation of

motion of such a system can be written in the form:

MGX G + CGX G + KGX G - F G (8.1)
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Where MG, C G and KG are the mass, damping and stiffness matrices

respectively. F G is the global force vectors. Equation (8.1) can also be

re-written in the partitioned form:

M TabiMbb_l FIj
(8.2)

TKaaKab Ial1F b

Where X a is the absolute nodal displacement vector of size n and X b is the

base displacement vector of size m. Fa is the nodal force vector, (from

pressure load, etc.) which is a null vector in absence of nodal loads. Fb

is the unknown base reaction. The subscript a and b in the matrices K, C,

and M correspond to nodal (free) and base (prescribed) degrees-of-freedom

(DOF) respectively.

Different methods are available that can handle such multisupport

excitation problems. The first one is the direct approach of writing

governing equation of motion in terms of absolute displacement along nodal

DOF. The main disadvantage of this approach is that, the right hand side

of the equation has all three items, the base displacement, velocity and

acceleration as excitation to the system.

The second approach, known as "unit base displacement" or more commonly

"influence coefficient _ or _pseudo-static" displacement approach. Here the

natural frequencies and mode shapes of the system are obtained by

restraining all the base DOF. Next, a sequence of static analyses are

performed to obtain the influence coefficients (i.e., static response of

the system) by prescribing unit displacements along base DOF, applied one

at a time, while keeping the remaining base DOF fixed. These influence

coefficients are then utilized to obtain the response of systems subjected

to multibase motions.

The third approach is analogous to penalty mass used in static analysis to

handle prescribed displacement problem. This is commonly referred as "Big

Mass', "Seismic Mass" or "Penalty Mass _ approach. A large mass several

order of magnitude larger than the system mass is lumped along each base

DOF. The natural frequencies and mode shapes of this free-free system,

that include the rigid body modes and near zero frequency modes in addition

to the regular modes (fixed base) are then obtained using a negative power

shift. Prescribed support motions are (approximately) achieved in an

indirect way by exciting the support masses along the base DOF with forces

equal to the penalty mass times the corresponding prescribed acceleration.

This approach can be carried out in both "NESSUS" and "STARDYNE _ . STARDYNE
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is a commercial code that is used in the industry particularly to solve
randomvibration problems. The NESSUSresults are comparedwith STARDYNE
results as part of this code verification effort. The subsequent sections
will be restricted to the "penalty mass" approach, with a discussion of its
relative advantages or limitations in handling the multisupport excitation
problem.

8.4.1 Big Mass (Penalty Mass) Approach

In this approach the prescribed support degrees of freedom are also

treated as unknowns. Huge masses, several orders of magnitude higher

than the sum of all the diagonal terms in the mass matrix, are lumped at

each base DOF. The unknown base force vector Fb is treated as a known

vector with magnitude equal to the big mass multiplied by corresponding

prescribed accelerations. The governing equation of motion of this

entire free-free model will be the similar to eqn. (8.2) and is given

by:

(8.3)

Rearranging the 2nd of the above equation we get:

" -- "" T )(a- Xu - KT Xu i + Mbb xb (8.4)Mbb Xu " L-Ma_ Xa- Cab Cbb ab Xa- Kbb _

Observing the above equation, one can see that the terms within the

square bracket are the products of two smaller numbers and can be

ignored as compared to the other term in the right hand side. This is

the penalty mass approach of indirectly pushing the unknown base

acceleration Xo towards the prescribed acceleration _, i.e.

Xu _ Xb as penalty mass -_ =
(8.5)

or

Xu = Xb for very large Mass
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It should be noted at this point that even if the rigid body mode of the

system is eliminated by attaching the base points to the ground by some

springs with finite stiffness (same or lower order of magnitude as the

other elements), the governing equation of motion will look exactly the

same as eqn. (8.3), except that elements of Kbb will increase slightly.

Therefore, relation (8.4) will still hold good. This approach will

referred in the future as 'modified or constrained Big Mass' approach.

The governing equations of motion (8.3) can be expressed in the compact

form:

M X + C>(+ KX ,,GmX b (8.6)

Where the number of unknown DOF N, is (n+m). The vector X represents

absolute nodal displacement.

This approach can be carried out in both "NESSUS" and "STARDYNE" for the

verification models. At present, "NESSUS" uses an inbuilt penalty mass

approach to handle multisupport excitation problems. The "Big Mass"

approach is, however, quite prone to numerical problem (instability) and

one must be careful in selecting the optimum penalty mass that is

neither too big to cause ill conditioning of the mass matrix, nor too

small to yield the desired base motion. The order of magnitude of the

penalty mass is the most important parameter that determines the

accuracy of this approach. Theoretically speaking, when the ratio of

the penalty mass to the system mass approach infinity, the response at

the base points approach the corresponding desired base motions

specified indirectly as forces. However, in a digital computing machine

with only finite significant digits, this creates a numerical problem.

The penalty mass should not be too large as compared to the average

diagonal elements of the mass matrix of the system to cause ill

conditioning of the matrices, at the same time, it should be

sufficiently large compared to the total mass of the system, so that the

base responses are quite close to the prescribed base motion. The

optimum order of magnitude is actually a machine dependent parameter and

one would llke to select a value as large as possible without getting

into numerical trouble.

On a 64 bit machine, a penalty mass of five or six order of magnitude

higher than the average diagonal (non-zero) mass of the system may be

considered as an optimum value (compromise between two extremes), since

there will still be six to eight more significant digits left depending

on the precision of the machine. It should be noted at this point that

as one starts refining a model, the average value of the diagonal

elements of mass matrix get smaller, thus allowing a smaller penalty

mass to avoid ill conditioning. This will cause a larger difference

between base response and prescribed base motion. For this reason, the

inbuilt feature in NESSUS that uses a penalty mass million times larger
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than the SRSS value of positive diagonal elements of mass matrix was

avoided in order to have a direct and better control over the selection

of penalty mass.

For systems with large number of dynamic DOF, free free models often

encounter a numerical problem during the modal extraction. It has been

observed that there is a tendency of missing rigid body and near zero

frequency modes and/or converging to the same mode twice. This ill

conditioning problem is aggravated even further when the number of free

supports (and consequently lumped big masses) increases. This problem

can be handled in several ways. One such approach that is adopted in

the verification problems is the "constrained penalty mass approach".

In this approach, the system is properly (and preferably symmetrically)

supported to remove all the rigid body modes (RBM) by flexible springs

that are grounded at one end and attached to the penalty mass at the

other end. There is no need to specify a negative power shift for this

stable system. The three RBM are then replaced by three additional near

zero frequency modes. Those mode shapes, however, must be very close to

the rigid body modes for the free free system.

The added springs to support the lumped masses should have stiffness,

preferably one or more order of magnitude lower than the overall system

stiffness (not the stiffness of individual element). The system

stiffness along each support DOF can be easily obtained from a static

run with unit displacement along that DOF, while keeping all other

support DOF fixed. The reactive force at that support point along that

DOF in an equilibrium check is the corresponding system stiffness. It

should be noted at this point that one needs to know only the order of

magnitude of the system stiffness. Furthermore, there is no need to use

different spring stiffness at different support points along a

particular direction, but the stiffness in different directions, must be

different for a better convergence of approximate rigid body modes.

8.4.2 Modal Analysis

Expanding the displacements in terms of modal coordinates ai, and mode

shapes _, i.e.,

N

; - _ ai _i
i=1 (8.7)

and assuming damping matrix satisfies the orthogonality condition, eqn.

(8.6) decouples into modal equations of the form:

m

ai + 2diwiai + _'_at 7"{ Ymt3 Xb,j

(i-i. 2, ..., N)

(8.8)
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Where _, and _, are the i °th natural frequency and modal damping ratio

respectively, and the participation matrix is"

F - @TG
m m (8.9)

where ¢ is the modal matrix

- [_l I @_ 1 ..._N ] (8.10)

8.4.3 Random Vibration Analysis (Frequency Domain Approach)

Here only a brief outline of the modal, frequency domain, random

vibration solution procedure is presented for a simple case that

corresponds to the "penalty mass approach", where excitation is

represented by base acceleration only. Assuming base acceleration to be

uncorrelated, the power spectral density function (PSDF) of modal

coordinates and its derivatives can be written in the form:

m

&-1 SXbt.Xbt. Ymkt. Ymjt.

m

Sakaj(Q) {_ _ R2 + i2CkWkR} 2 _2 i2CjwjQ}{_j -

Sakaj(R) " R2Sak ja (Q)

Sakaj (n) = Q4.... Sakaj(Q )

i -4-I

(8.n)

Where Sx - (Q)

b& Xbi

is the prescribed PSDF of i-th base acceleration.

The covarlance matrix of modal coordinates (or its derivatives) can be

obtained by integrating the area under the PSDF curve over the entire

frequency range, i.e.,
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(n) _2n
E a(n)a ," J"

k j --_ 2

S (Q).df2 - o (8.12)
a a.

akaj k 3

where E{-] denotes expected value.

The integration in eqn. (8.12) is carried out (usually) numerically over

a finite prescribed frequency range. Once the covariance matrix of modal

coordinates is obtained any arbitrary response quantity that can be

expressed as a linear combination of the modes can be evaluated by using

the simple superposition principle.

8.4.4 Modal Superposltion

Let R be vector with known covariance matrix Z**, given by:

_RR " E [RR T] (8.13a)

Let u be a vector that can be written as linear combination of R, i.e.,

{U} - [O ] {R} (8.13b)
UR

Where DUR is the linear transformation matrix. The covariance matrix

of u can be easily obtained from:

Zuu - E [ UuT ] - OUR • _RR OUR T (8.14)

In the "Big mass" approach, e.g., the absolute displacement can be

expressed as:

{x} - [,] {A}

Where ¢ is the modal matrix and A is the modal coordinate. The

covarlance matrix of displacement response can be obtained by using eqn.

(8.14), i.e.,

. oTZXX E [X xT.] - O ZAA

Where Z_A is the covarlance matrix of modal coordinates that is already

known. Covariance matrix of velocity and acceleration of nodal points

can be obtained in exactly the same way. Covariance matrix of any other

response quantity can be similarly evaluated e.g.,to obtain stresses the

DUR matrix will represent the stress-displacement matrix, for stress

resultants it is nothing but the element stiffness matrix.
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8.5 Simple Verification Problems

Test Problem I

Consider a very simple spring mass model supported at two points A and B as

shown in Figure 8.17. The governing equation of motion of this undamped

DOF system is given by:

•. 2

x2 + _2X2 " _-2 (Xl + x3) (8.15)

where _ - 2Klm - natural frequency

Consider the case when the symmetry of response is destroyed by applying

two different amplitudes of excitation at the two support points, i.e.

X1 - AoSinDt

and

X3 - 2A Cos_t
O

The steady state response governed by eqn. 8.15 is:

A /2
o

X2 - - 2r2( 1 - r 2)
{Sin_t + 2CosQt}

(8.16)

The spring forces in the two members are not the same due to loss of

symmetry. They are given by:

FI - k (X2 - xI) -
-kAo/_ 2

2r2(I - r2)

-kA /2
. O

F2 - k (X 3 - X2) 2r2( l _ r2 )

{(2r2 - I) Sinnt + 2Cos_t}

{- Sin_t + (2 - 4r 2) Cosnt}
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The normalized amplitude of spring forces are given by:

131 = IF1 I (kAol_ 2) ,-

_]2 " IF2 J I (kAo/_2) "

(2r 2 - l )2 + 4 / {2r2(l-r2)}

(2_4r2) 2 r 2+ 1 I {2 (l-r2)}

(8.18)

8.5.1 Penalty (Big) Mass Approach

In this approach, two large masses are lumped at the two support point

as shown in Figure 8.18. The governing equation of motion of the

free-free system is given by:

I IIIim x; + - 2K x 2

x: -KM . ,x3

where X I, and 2_ are the desired (prescribed) acceleration at the two

support points. X, and X3 are the corresponding response (achieved base

acceleration) of the two big lumped masses. Solving the eigenvalue

probIem, the three natural frequencies and ode shapes are given by:

_I ,2,3 1°_0 :12

_o 1 + :12 (8.20)

¢I = 1 ; e2 = ? ; ¢3 1I - -:12

whe re

a - _ and _o "
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The first mode is the rigid body mode which does not contribute to the

stress response. However, this must be included if correct

displacement, velocity and acceleration responses are needed. The

second one is a near zero frequency mode that handles the differential

support motion. The third one is a normal mode that is approximately

the same as the mode with fixed base support.

Expanding the displacements in terms of modal coordinates a i and the

mode _ shapes, eqn. (8.19) decouples into modal equations of the form:

"" 2 1 -' ""
al + "l al " 2 + : (Xl + x3)

l "°I "I

a2 + ",2 a2 " 2 (Xl - x3)

"" 2 -I -' "'
a3 + ",3 a3 l 2 + : '(Xl + x3)

(8.21)

Once the modal coordinates are solved, the displacement responses can be

easily obtained by using modal superposition. The steady state response

of the modal coordinates due to excitation type II, i.e., _l'AoSin_t

and _-2AoCos_t

a 1

A
o {Sinai + 2Cos_t}
2 _ _z)(2 + =) (',l

A
0

a2 " 2 _ _2 {Sin_t - 2Cos_t}
2(',z ) (8.22)

-A
0

a3 -
2 _ Q2)(2 + :,)("3

{Sin_t + 2Cos_t}

It should be noted at this point that co_ is not exactly equal to zero

when computed on a digital computer because of round off errors.

However, it is very small (several orders of magnitude smaller than the

near zero frequency w_. The displacement responses can be obtained by

modal superposition. They are given by:
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CL

xI - aI + a2 - _ a3

x 2 = a I + a3

x3 - aI - a2 - _ a3

Substituting back eqn. (8.22) into eqn. (8.23), we get:

(8.23)

1 1
xl " Ao [{ 2 + +

(2 + _) (_I - _2) 2(_ - _2) 2(2 + =) (_ - _2)

1 1 :

- + 2 _2 }+{ 2 _ a2) z(_ - Q2) 2(2 + :) (_3(2 + :) (_I - )

} Sinai

(8.24)

2Cos_t]

Now assuming _ is much larger as compared to _z and _, we obtain:

2

X1 : Ao [ 4 + : SinQt + 3: _ Cosg_t] (8.25)
-2(2 + :)Q2 " (2 + :)_2(w§ - _2)

Finally, considering the fact that the mass ratio a << I the above

expression yields:

- A°

xI : --_ Sln_t - xI - prescribed base motion at support I.

Similarly, one can show that

-2A

o CosQ'c = x3
x3 - Q2

- prescribed base motion at support 2

and the absolute displacement at node 2

X2 -
r_ (I- r_)(2 + a)

{Sin_ + 2Cos_t}
(8.26)
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comparing the above expression with the one in eqn. (9.16), we see that

they are identically the same as u_O.

For the NESSUS verification run K - 250000, mg - 200 and Mg - 5o0E6

(i.e., _ - .4E -4) were selected. The system parameters are shown in

Figure 8.18. The mode shapes and the natural frequencies are obtained

in NESSUS using a negative power shift. The NESSUS results can be

compared to that from analytical expressions in eqn. (8.20). They are

presented in Table 8.8. NESSUS modal results agree quite well with the

analytical solution.

The analytical results obtained earlier in eqns. 8.16-8.18 are valid for

harmonic excitation. Similar relationships also hold good between RMS

excitation and RMS responses for a narrow banded random excitation when

the two base motions are completely uncorrelated. An acceleration PSD

level of 5 g2/Hz over a band of i Hz for DOF x, and 20 g2/Hz at the

other end (DOF x3) were selected. This is achieved indirectly by

specifying a force PSD equal to big mass squared times the corresponding

acceleration PSD. They are also shown in Figure 8.18.

The responses computed using the "Big Mass" approach and the analytical

expressions described earlier are observed to be reasonable close. The

RMS displacements along nodal DOF are presented in Table 8.9. The RMS

stress resultants are presented in Table 8.10.

It is worthwhile to mention that the free free model used in the penalty

mass approach can often lead to inaccurate modal solution, specially for

large models. This can be avoided by using a constrained penalty mass

approach.

8.5.2 Constrained Penalty Mass Approach

As discussed earlier, this is just an extension of the "Big Mass"

approach where the rigid body mode is eliminated from the system by

constraining the big masses by flexible springs as shown in Figure 8.19.

Here both of the big masses are constrained for the sake of symmetry

even though only one of them needs to be constrained to make the system

stable. The governing equation of motion then takes the form:

]lil{I M xI (K+BK)
m x2 + -K

M 3 0

OK]I1If-K xI Mxl

2K _ x2 - O.,
-K K+BK) x3 Mx3

(8.27)

which is exactly the same as eqn. (8.19) except that the diagonal terms

in the stiffness matrix associated with the big mass d.o.f, increased,

making the stiffness matrix nonsingular. Here also for large M, X, and

X= will approach 21 and X_, the prescribed base motions as long as _ is

small (preferably less than I). The natural frequencies are given by:
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__o [ (I + :12-(-_) _ (I + _]-L!-t_)z I12
w2'3 " 2 2 ) - :(28+I) ]

(8.28)

Looking into the expressions for natural frequencies it can be observed

that it is more sensitive to _ values than the _ values. A recommended

value of _ will be .001 to .0001, i.e., the stiffness of the additional

springs to be three or four orders of magnitude lower than the system
stiffness. The recommended _ value will be around 10 .6 for 64 bit

machines, that alone in this example can reduce the first two

frequencies close to zero and the third one much closer to the actual

natural frequency. However, even with this relatively large a and

values, the responses were observed to be reasonably close to this

correct solution.

The system parameters are shown in Figure 8.19. The natural frequencies

and the mode shapes can be obtained for this stable system with a

negative power shift. They are presented in Table 8.11. The natural

frequencies computed from the analytical expression in eqn. (8.28) is

also presented in the table for comparison.

The RMS responses, both displacement and stress resultants for this

example problem are not presented here since they are almost the same as

that of the unconstrained penalty mass approach as presented in Tables

8.9 and 8.10.

For this simple verification problem the RMS displacement responses

along nodal degrees-of-freedom and RMS stress resultants at the nodes

are observed to be fairly close to that obtained by analytical solution.

Test Problem 2

In this test problem a 2 DOF lumped mass system as shown in Figure 8.20

is considered. Constrained penalty mass approach is used to obtain the

response of the system subjected to multibase random excitation. The

natural frequencies and the mode shapes of this stable system is

obtained in NESSUS and STARDYNE without a negative power shift. They

are presented in Table 8.12. The modal characteristics obtained using

the two different programs agree reasonably well.

The system is subjected to band limited white noise excitation at the

two support points as shown in Figure 8.21. Two different types of

excitation are considered. One fully correlated and the other one fully

uncorrelated base motion. The RMS displacement responses for these two

load cases are presented in Table 8.13. Exact values of the prescribed

base motions are presented in Table 8.14. This is a check for the

accuracy of the Big Mass approach where prescribed base motion is

achieved indirectly.
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Figure 8.21 Base Accelerations Applied to Simple Verification Problem 2
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The RMSstress resultants in the membersare presented in Table 8.15.
It is worth mentioning at this point that NESSUSstress resultants are
computedand stored on a node base rather than element based computation
performed in STARDYNE.Therefore, duplicate nodes were defined in
NESSUSso that appropriate comparisons can be made. Once again, for
this example, NESSUSresults were observed to be reasonably close to
that of STARDYNEresults.

8.6 Introduction to High Pressure Oxidizer Duct Verification Problem

This study concentrates on conventional random vibration analysis as well

as uncertain random vibration analysis of high pressure ducts, typical of

the ducts used in Space Propulsion Systems. The dynamic loads in a high

pressure ducting system typically include:

I) Random base excitation loads with uncertain power

2) Harmonic pump generated base excitation loads with uncertain

amplitude and frequency

3) Internal random pressure loading of uncertain correlation

characteristics and power.

The major variations in system parameters can include:

I) Damping variations

2) Thickness variations

3) Variation in stress concentration factors due to

variable weld offsets.

The initial verification efforts concentrated on verification of NESSUS

results and capabilities exercised on typical line element duct model. The

results represented here are restricted to conventional random vibration

analysis. Continuing efforts in FY'89 addresses the uncertain random

vibration and probabilistic harmonic excitation features available in

NESSUS.

8.7 Random Vibration Analysis of High Pressure Oxidizer Duct Using NESSUS

A NESSUS model of a high pressure oxidizer turbopump discharge duct was

generated. The model shown in Figure 8.22 was generated using two noded

linear isoparametric beam element (Type 98) available in NESSUS. Figure

8.23 is another visual representation of the same duct model showing the

duct radius, flange radius, and the valve attachment sizes. The statistics

of the finite element model is shown in Table 8.16. Finite element models

of high pressure ducts typically contain the following features:

I) Pipe elements with provisions for internal fluid mass.

2) Elbow curved pipe elements with provisions for approximating

increased flexibility either through ASME flexibility factors

or other ways to account for ovalization. Effects of high

internal pressure are also included in the above calculations.
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Six spectral cases were run using five different PSD's shown in Figures

8.29 through Figure 8.33. These six base acceleration spectral cases are

identified in Figure 8.34. The RMS displacements at a typical node 27 due

to power spectrum case 6 is compared in Table 8.18 between NESSUS and

STARDYNE. The results are in good agreement. The result of the various

frequency band discretization and gauss quadrature used is also reported in

the same Table 8.17 using NESSUS. This was done to find the optimum

numerical integration scheme. The results indicate there is further room

to coarsen up the frequency band discretization and still obtain acceptable

results. While the random response calculation part of the code itself

performed satisfactorily when compared to STARDYNE, the automatic frequency

band discretization part of NESSUS code appears inefficient. It took more

than an order of magnitude more CPU time (>50) to calculate the frequency

band discretization values for numerical integration than it took to

calculate the actual response. Thus, improvement to the automatic

frequency band discretization scheme is necessary and will be accomplished

in FY'89. As an alternate, the user can completely specify the frequency

discretization scheme and override the automatic algorithm. The advantage

of the automatic algorithm is that the user does not have to know the

location of deterministic as well as perturbed structure resonance

frequencies to obtain an accurate response calculation.

Next, the stress resultant values between NESSUS and STARDYNE are compared.

It must be noted that NESSUS does not calculate stresses for beam elements.

In its current state of development, it only outputs and stores only stress

resultants (beam end moments, shear forces, and axial forces) in the

perturbation database. It must also be mentioned that for shell elements,

both stress resultants and stresses in layers are stored in the

perturbation database. Further experience with NESSUS TYPE 98 two noded

isoparametric beam has shown that appropriate choice of Loubniac parameter

used to calculate nodal stresses is highly important. Use of trapezoidal

rule for nodal stress recovery is imperative to obtain accurate nodal

stress resultants. Use of other options can result in very inaccurate

stress resultants for general stress gradients.

R.M.S. stress resultants for a typical node are compared in Table 8.19.

The axial and torsional stress resultants are directly comparable between

the two programs. However, the shear and end moments are affected by the

orientation of the transverse local beam axis. While the orientation of

local axes are close between the two models, they are nevertheless,

slightly different and cannot directly be compared. In general, STARDYNE

stress resultant results for the same node are lower. This can be

explained as the cubic displacement function finite element used in

STARDYNE is more flexible than the linear isoparametric beam element used

in NESSUS. Further comparisons between NESSUS and STARDYNE stress

resultant results are made in Table 8.20. In this case, the magnitude of

the maximum R.M.S. stress resultant and its location are compared between

the two codes for all the six spectral cases. The results are in very good

agreement. In some instance in Table 8.19, the maximum stress resultants

for NESSUS model occur at a node within the elbow approximated using linear
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elements. For such cases, there was no corresponding node in STARDYNE

model. The physical location of the maximum stressed nodes between the two

codes can be seen in Figure 8.35.

To obtain an overall general comparison of the results between the two

codes, fringe plots for torsional and axial stress resultants are shown in

Figures 8.36 through 8.43 for power spectral case i and power spectral case

6. There is overall agreement between NESSUS and STARDYNE results. The

NESSUS result for axial and torsional stress resultants for spectral case 2

through 5 are also shown in Figures 8.44 through Figure 8.51.

In summary, NESSUS random vibration analysis capabilities have been tested

and verified using high pressure duct verification model. The results are

in agreement with STARDYNE results for both R.M.S. displacements and R.M.S.

stress resultants. Where analytical results exist for a simple case, such

as documented in Section 8.5, the NESSUS results agree with analytical

results. The nodal velocities and accelerations were not compared and

verified as they are neither output nor stored in the perturbation data

base.

The probabilistic structural analysis of duct verification efforts will

continue in FY'89. The verification efforts will focus on a few critical

system parameters as random variables such as damping and more emphasis

will be placed on the treatment of load variations. The load random

variables considered will include harmonic load amplitude and frequency

variation and variations in the power level of PSD (area under PSD). The

random variables that affect the shape of the acceleration P.S.D. diagrams

are less well characterized. The output from probabilistic harmonic

analysis and uncertain random vibration analysis would consist of

characterization of R.M.S. stress resultants (cumulative distribution

function) and characterization of stress velocity (cumulative distribution

function). With the above two quantities expected value of fatigue life

and its coefficient of variation can be calculated.

8.8 Enhancements to Post-Processlng Interface to NESSUS

Additional enhancements to post processing interface between NESSUS and

PATRANwas completed and is now being tested. The enhancements include

translation of new items such as modal stresses and modal strains to PATRAN

neutral results file. Additional capabilities were further added to

translate spectral data to PATRAN neutral results file. The data includes

displacements, stresses and strains. Additional options for obtaining

combinations of spectral cases were added to the code. Code has built in

logic to vector sum the real and imaginary parts of harmonic cases and then

add to the mean square values for random excitation cases with user defined

factors for each case to obtain R.S.S. values. The graphical presentation

of the results reported in the verification studies were post-processed in

PATRAN using this interface.
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8.9 Fiscal Year 1989 Effort

NESSUS verification efforts on high pressure oxidizer duct will continue.

Random vibration analysis with probabillstlc system parameters will be

defined and a distribution of selected R.M.S. stress resultants and stress

velocities at some critical locations will be reported. Then the total

power contained in a PSD will be considered as additional random variables

with realistic variations based on experimental data. Strategy for multiple

random variables that affect the shape of the PSD will also be developed

and verified. Verification efforts on LOX post and transfer ducts will be

conducted. LOX post analysis will address probabilistic material nonlinear

analysis. Transfer duct analysis will address probabilistic material and

geometric nonlinear analysis.
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9.0 PROBABILISTIC APPROXIMATE ANALYSIS METHODS (PAAM)

9.1 The Concept of an Approxlmate Method

9.1.1 Motivation

The most common structural analysis techniques in use today are finite

element and boundary element methods, and these are both represented in

the PSAM software. These techniques permit highly accurate

three-dimenslonal modeling of structural geometry, thermal and

mechanical load environment, and material properties. Both linear and

nonlinear system response can often be estimated within a few percent of

the actual experimental behavior. Unfortunately, these techniques can

also be expensive and tlme-consuming. Particularly in the early stages

of design, when geometries, loads, and materials are only tentative, it

is not practical to assemble an exact, comprehensive three-dimensional

model for every critical component. What is needed, typically, is some

means of estimating the nature and rough magnitude of maximum stresses

or displacements, natural frequencies, etc. Of further value is the

identification of which design parameters exert the most influence on

the total system performance, so that further design evolution is most

efficient.

These needs are addressed in the PSAM software by the Probabillstic

Approximate Analysis Methods (PAAM) module. The basic idea of PAAM is

simple: make an approximate calculation of system response, including

calculation of the associated probabilistlc distributions, with minimal

computation time and cost, based on a simplified representation of the

geometry, loads, and material. The deterministic solution resulting

should give a reasonable and realistic description of

performance-llmlting system responses, although some error will be

inevitable. If the simple model has correctly captured the basic

mechanics of the system, however, including the proper functional

dependence of stress, frequency, etc. on design parameters, then the

response sensitivities calculated may be of significantly higher

accuracy. In other words, the calculated probabillstic distribution of

the response variable may be in significant error only by some offset of

the mean value.

9.1.2 Approach

Three factors make up the "approximate" analysis approach. The first is

a simplified representation of the part geometry. Complex

three-dimensional shapes are replaced wherever possible by equivalent

structures which are simple plates, shells, beams, or pipes with

relatively few descriptive parameters. The second factor is a similar

simplification of the applied mechanical and thermal loads. Point

loads, uniform fields, and linear or parabolic distributions are used to

describe these quantities. Often a more complex load environment can be

approximated through linear superposition of the simple descriptors.
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The third _actor in the PAAM methodology is the solution technique

itself. Complex variational techniques with many degrees of freedom are

replaced by simpler computational schemes. In some cases, it is

possible to construct a simple mechanics-of-materials model, often in

two dimensions. In other cases, more sophisticated closed form

solutions can be derived or (preferably) adapted from previous research

results in the literature. These may be based on elasticity or may

employ approximate energy methods. Yet another analysis technique which

meets the requirements for speed and efficiency is to assemble a crude

finite element solution, based on the simplified geometry and utilizing

few degrees of freedom. This type of FEM model would actually be

transparent to the PAAM user in that the simple mesh and boundary

conditions required would be generated automatically.

9.2 Fast Probability Integration Interface

The probabilistic analysis is performed by invoking one of the options in

the FPI module. The FPI module has a full-distributlonal analysis

capability in which the input random variables are defined using

probability distributions. The computed probabilistic structural responses

are represented by cumulative distribution functions (CDF's). The CDF for

each response is computed at a number of user-selected response values or

cumulative probabilities. For each response value or probability, it is

assumed that a most probable point (or design point) exists in a joint,

standardized, normal probability space. An iteration process involving

linear response-surface (or limit state) approximations and normal-tail

approximations is performed to determine the design point using the

Rackwitz-Fiessler algorithm [i]. The CDF for each associated design point

is then computed using an effective reliability analysis algorithm which

takes into account the effect of non-linear response surface [2]. The

closed form or simple numerical approximate solutions to particular

structural analysis problems reside in independent user-written

subroutines. FPI establishes linear or quadratic polynomial approximations

to the limit state using a finite difference "(central difference) scheme on

the subroutines. Further information on the FPI algorithm has been

published in previous PSAM Annual Reports.

The PAAM software package is essentially an integration of the standard

off-the-shelf FPI program with the component-speclfic closed-form or simple

numerical response functions. The standard FPI code was enhanced to

perform reliability analysis on any user written response function. There

is complete compatibility between FPI and PAAM. Additions to FPI are

quickly integrated into the PAAM code. All of the FPI options such as

selecting response levels or probability levels, Monte Carlo options, etc.,

are available in PAA/_.

9.3 Formulations for Demonstration Components

The PSAM code is being demonstrated and validated by considering four

representative critical components in the current Space Shuttle Main Engine

(SSHE). The same four components are considered in the PAAM code, which by

its very nature is component-specific. It should be noted, however, that
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the architecture of the PAAM software permits new closed-form expressions

for these or other components to be quickly installed and evaluated,

including all probabilistic considerations.

The four components permit a wide range of "approximate" solution

strategies to be demonstrated. Two of the components, the LOX post and the

transfer duct, are addressed with closed-form expressions based on

mechanics-of-materials models or more complex analytical formulations

adapted from the literature. The other two components, the turbine blade

and the high pressure oxidizer duct, are treated with a simplified finite

element-based solution.

9.3.1 Closed Form Solutions

The LOX post is part of the injector which introduces and meters the

propellent flow to the combustion chamber after atomization and mixing.

A diagram of the actual part is given in Figure 9.1, along with the PAAM

simplified representation of the post. The post is modeled first as a

beam with hollow circular cross-section. The end conditions are fully

fixed at the inlet (top) end and elastically restrained at the outlet

(bottom) end. The effective end stiffness there is represented by a

rotational spring with some finite, non-zero stiffness. A thick-walled

cylinder model is also used. Important loadings are internal and

external pressures and temperatures, and transverse distributed loads

due to fluid drag. The analysis must consider not only static stresses

but also free and forced vibration due to transverse fluid flow and the

possibility of buckling due to constrained axial thermal expansion.

Complete details of the approximate solutions are given in Appendix D,

Cases 2A.S (static solution, thick-walled cylinder model), 2B.S (static

solution, beam model), and 2.V (vibration solution, beam model).

The vibration analysis of the LOX post provides good examples of

solution strategies. The basic solution for free vibration of

fixed-fixed and fixed-plnned uniform beams is available in handbooks

[3]. Both natural frequencies and mode shapes are given in closed form

in terms of geometry and material parameters and a frequency factor, k,

which to a first approximation is a simple function of the mode number

and the bounding end condition. Solutions for intermediate end

conditions (elastically restrained ends) are available in tabular form

for a limited number of spring stiffnesses [4]. These results can be

fitted with a simple empirical relationship to calculate k for any mode

number and any end condition. The possible effects of axial load or

beam taper on natural frequencies can also be estimated from previously

published expressions. The forced vibration solution follows with

little additional difficulty. Assuming, for example, a harmonic

transverse point load at some location along the beam, the response at

any other point can be determined with knowledge of the receptance

function [5]. This calculation results in a series which is dominated

by the terms corresponding to the two nearest natural frequencies.

Maximum outer fiber bending stresses are easily calculated by proper

differentiation of the displacement expression. Additional terms can be

added to include the effects of structural damping. Finally, it is no
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more difficult to analyze random vibration from the same expressions

written in terms of spectral densities and transfer functions. Multiple

random loadings can be considered and require as additional input only

the cross-spectral densities.

The transfer duct routes hot gases from the high pressure preburner

turbines to the main injector torus manifold, where it is directed into

the hot gas cavity of the main injector. A diagram of a typical duct is

given in Figure 9.2, accompanied by a schematic of the PAAM simplified

representation. The duct is modeled as a thin circular cylindrical

shell with radius equal to the average radius of the actual conical

shape. Stresses arise from a net external pressure and thermal

gradients. Buckling is a failure mode of special concern. A general

formulation is available for the calculation of natural frequencies, but

only axlsymmetric modes are considered for harmonic and random forced

vibration caused by fluctuations in internal pressure. Full details of

the models and equations are given in Appendix D, Cases 3.S (static) and

3.V (vibratory).

9.3.2 Simplified Finite Element Solutions

In some cases, development of a "simple" closed-form solution for a

simplified load/geometry case is itself a complicated and tedious

problem. An alternative approach is to develop a simplified finite

element model. This is in no way comparable with the complex finite

element models employed in the PFEM task. The PAAM FEM represents a

highly simplified geometry with a limited number of elements. The model

itself is actually transparent to the user. He only supplies dimensions

of the part within specified geometrical constraints, and the code

automatically generates the required simple mesh. Loads are similarly

simple, and load inputs to the FEM are automatically generated from user

description. Execution time is short.

Some preliminary work has been done to plan and assemble such models for

two of the demonstration components, the turbine blade and the high

pressure oxidizer duct (HPOD). The models will be constructed with the

NESSUS/FEM software developed for the PSAM project.

The turbine blade will be modeled with two-dimensional plate elements

allowing for limited variations in curvature, tilt, lean, twist,

thickness, and width. Geometric parameters will typically be specified

by the user for a limited number of points around the perimeter of the

plate (e.g., the four corners), and the complete geometry will then be

generated by linear or quadratic interpolation across the face. A

similar scheme will be used for specification of the pressure loads and

temperatures. The shroud will be modeled as a lumped mass and the

platform as a variable stiffness. The effects of centrifugal loading

will be considered.
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Figure 9.2 Diagram of SSME Transfer Duct (top) and

PAAM Simplified Geometrical Representation

(bottom)
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The HPOD will be modeled with an assembly of a limited number of beam

elements with hollow cross-section. All calculations will be based on

thin-wall theory. Ovalization effects in the elbows will be

incorporated with empirical adjustments to the calculated stresses based

on ANSI/ASME flexibility factors. Static loads to be considered include

internal pressures, flow momentum, vehicle acceleration, and

temperatures. Dynamic loads include periodic and random base excitation

and periodic and random pressure fluctuation.

9.4 Validation

A validation problem of the LOX Post thick cylinder model has been

performed using realistic input data. An advanced first order and Monte

Carlo analysis of the closed form solution were both performed.

The variable inputs for the LOX Post thick cylinder model are listed in

Table 9.1.

Table 9.1

Definition of Random/Determlnlstlc Variables

Variables Distribution Mean COV

Inner Radius (Ri)

Outer Radius (Ro)

Young's Modulus(E)

Poisson's Ratio

Coefficient of Thermal

Expansion

Internal Pressure(Pi)

External Pressure(Po)

Internal Temperature(Ti)

External Temperature(To)

truncated Normal 0.94 in. 1.06%

(:_Z).03)

truncated Normal I.i0 in. 4.55%

(-0.002, +0.01)

Normal 3.40E+7 psi 2%

Normal .3594 2%

Normal 5.65E-6 /R 5%

Lognormal 3077 psi 4%

Lognormal 3232 psi 4%

Lognormal 194 R 1.55%

(3 R)

Lognormal 1444 R 1.55%

(15 R)

530 R 0%Reference Temperature(Tref) N/A

Notes: All mean value data was obtained from the First Annual PSAM Report

and Rocketdyne. The truncated normal limits for R i and Ro along with the

mean temperatures and COV of T i and To were provided by Rocketdyne. Other

statistical data such as distribution types and COV for the other random

variables were determined from default values provided by Dr. Paul

Wirschlng and are not problem specific (see Table 9.3).
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The input data for PAAM is identical to that for FPI with the exception

that additional data is sometimes needed. This need is accommodated by

adding the necessary response data after the model data. The keyword

*RESPONSE indicates response data is being provided. In PAAM, the first

data is the response function desired (i.e. LOX post thick cylinder, LOX

post tapered beam, turbine blade, etc.). In the LOX Post thick cylinder

example the response function is "2AS". The second data is a set of five

integers. The third data is a set of five reals. This information can be

used in any way desired by the user written subroutines. Additional

information can be entered in any format as long as the user written

routine reads the data properly. For the LOX Post thick cylinder example

the first integer indicates the response type (i.e. hoop stress, radial

stress or axial stress). The second integer indicates whether end

constraints are imposed ( ii - yes, 12 - no). The first real Indicates the

radial position of the desired response (0.0 - Ri, 1.0 - Ro).

The input file for an advanced mean value solution of the LOX Post thick

cylinder model is listed in Table 9.2. The desired response is the hoop

stress at the inner radius without end constraints.

Table 9.2

PAAM Input File for LOX Post Thick Cylinder Model

*FPI

THICK CYLINDER MODEL (2AS)

*RVNUM I0

*GFUNCTION 6

*DATASETNM 0

*METHOD I

*PRINTOPT 0

*ANALTYP 0

*END

*DEFRANVR

RI

USER DEFINED HOOP STRESS

0.9400000E+00 O.1000000E-OI 0.1000000E+02

0.91 0.97

RO

O.IIO0000E+OI O.3300000E-02 0.1000000E+02

1.098 I.ii

E

0.3403200E+08 0.6806400E+06 0.2000000E+OI

XNU

0.359375 0.00719 0.2000000E+OI

ALPH

0.5650000E-05 0.2830000E-06 0.2000000E+OI

PI

0.3077000E+04 0.1230000E+03 0.4000000E+01

PO

0.3232000E+04 0.1292800E+03 0.4000000E+01
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TI
0.1940000E+O30.3000000E+OI0.4000000E+OI

TO
0.1444000E+040.1500000E+020.4000000E+01

TREF
0.5300000E+030.O000000E+O00.2000000E+OI

*END
*RESPONSE
C LOXPOSTTHICKCYLINDERMODEL
2AS

i II 0 0 0
0.00000 0.00000 0.00000

*END
0.00000 0.00000

The results of the LOX post FPI and Monte Carlo analyses for hoop stress at

the inner and outer radii are shown in Figures 9.3 and 9.4. The agreement

between FPI and Monte Carlo is excellent for the closed form model.

However, the hoop stress values clearly indicate that yielding will take

place. A nonlinear model would be required to model this behavior

correctly.

Figure 9.5 shows the sensitivity factors of the random variables for the

hoop stress at R i. The coefficient of thermal expansion clearly dominates.

The internal and external radii are insignificant due to their tight

tolerances. It should be pointed out that the COV used for the thermal

coefficient (ALPHA), elastic modulus (E), Poisson's ratio (XNU), internal

and external pressure (Pi and Po) were chosen from default values given by

Dr. Paul Wirschlng (Table 9.3). This statistical data is suggested to be

used when problem-specific data is not available. Use of improved

statistical data may significantly alter the results. Special attention

should be given in FY'89 to identification of more specific information

about statistical distributions of input variables to the PAAM models.
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Table 9.3

Default Distributions and COY for NESSUS Random Variables

VARIABLE D_STRIBUTION

E Normal

n Normal

G Normal

r Normal

a Normal

Yield stress Weibull

Coordinates Normal

Thickness Normal

Temperature Lognormal

Pressure Lognormal

Forces Lognormal

Cross-sectional area Normal

Inertia Lognormal

Torsional constant Lognormal

Springs Lognormal

Blade angle - x,y,z Normal

Material orientation Normal

Other Lognormal

co_/v
0.02

0.02

0.02

0.02

0.05

0.07

O. 005

0.005

0 05

0 O4

0 O2

0 O07

0 O2

00l

O.O2

stdev - 0.i °
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9.5 Future Work

Efforts in FY'89 will be focused on completing the development, coding, and

validation of the simple linear models for all demonstration components. A

majority of this work will involve the transparent FEM models for the

turbine blade and HPOD.

Validation efforts will be extended by comparing PAAM results with

NESSUS/FEM results for the PAAM models based on closed form expressions. A

selected number of NESSUS finite element models corresponding to the

simplified geometry and simplified loads of a PAAM model will be analyzed

as validations of the PAAM analytical expressions and assumptions. Where

possible, the PAAM results will also be compared to the NESSUS/FEM

validation models which are based on more exact, complex representations of

geometries and loads. This will provide some evaluation of the suitability

of the geometry/load simplifications. This comparison will also permit

some overall evaluation of the PAAM scheme relative to the conventional

PSAM FEM scheme.
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As funding permits, attention will be given to the development and

validation of a select number of nonlinear models in order to demonstrate

this general capability in the PAAM scheme.
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I0.0 STOCHASTIC THERMOVISCOPLASTICITY

i0.i Introduction

The constitutive theory of thermoviscoplasticity is extremely general in

nature [I], and is capable of describing a very wide variety of material

behaviors, ranging from linearly viscous fluids to rate independent

elastoplastic solids. Most thermoviscoplastic (TVP) theories or material

models, though, are phenomenological, with a feature of such models being

their dependence on phenomenological parameters that serve to describe

gross material characteristics such as hardening, softening, and

hysteresis. These parameters usually are not directly related to the

actual physical properties of the material that give rise to its gross

behavioral characteristics. Thus, these models correlate a material's TVP

behavior, but provide little or no insight into the active mechanisms that

maybe controlling the TVP behavior.

The purpose of the stochastic TVP material modeling effort within the PSAM

project is to provide a sound basis for structural reliability modeling

when stochastic TVP material behavior is to be included. The effort has

been along two fronts. First, owing to the history (or path) dependent

nature of TVP materials, and of phenomenological TVP material models that

are typically used in calculations of structural response, a reasonable

algorithm that preserves this path dependence has been proposed for

calculating the evolution of the statistics of the TVP structure's

response. An important aspect of this problem is that the structure's

response statistics are directly related to the statistics of its

material's initial state. Consequently, the second part consists of

describing the initial material state in terms of physical, or "primitive",

material properties that are readily observable (such as grain sizes and

shapes, dislocation density, etc.) and whose statistical characteristics

are more readily estimated. Calculations of probabilistic TVP material

response using such "primitive", or mechanistic, constitutive models will

yield insight into how the statistics of a phenomenological model's

parameters are affected by the statistics of the readily observed

"primitive" material variables.

10.2 Random Fields

The stochastic parameters of the probabilistic structural analysis problem

may be split into two categories: the first being uncertainties in initial

conditions; the second, uncertainties in external loading histories. The

first category may contain uncertainties in initial material properties and

uncertainties in the structure's initial geometry. In the most general

case for random material behavior, the uncertainties in the initial

material properties are described by random fields of these properties

which initially span the structure. A random field is a function of

three-dimensional space that possesses uncertainty of the parameters of the

function, over the three-dimensional space [2].
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The theory of randomfields is fairly complex, but in practicality a finite
element mesh_s used to model the randomfield. Hence, the randomfields
can be reduced, as in the reference above, to sets of discrete, but
correlated, randomvariables. To define the stochastic modeling problem,
the uncertainties in the material properties need to be specified
statistically. This is done by prescribing, as an initial condition, the
joint probability density function (PDF) of these sets of (space-discrete)
randommaterial variables.

The second category of probabillstic variables may be introduced by

prescribing uncertainties in the external loading history. In this case,

the loading is a random function of time. Unlike the material modeling

evolution, the stochastic nature of the loading can change at any time

(e.g. random process). Similarly to before, the time axis can be

discretlzed so that the loading history is prescribed through a set of

discrete, correlated random variables with a specified joint PDF.

10.3 Probablllstlc Evolution of TVP Behavior

It is taken as a basic tenant that, when a real TVP material is subject to a

known loading history, its deformation mechanisms obey the laws of classical

physics in a deterministic way, i.e., knowing its current history dependent

mlcrostructural state, and its current loading, the material "knows what to

do," and it does not deform by means of a random process. If the constitutive

model was to be a random process, then this behavior would be akin to having

the material characteristics, at a material point, change without the

influence of any thermodynamic force. This is equivalent to saying that the

current behavior is not related to a physical set of initial conditions, and

therefore, this violates an engineering sensibility for material behavior.

In short, for a real TVP material (of known geometry subject to a known

loading history), the randomness of its initial state, or its microstructural

primitive variables, is the sole source of its randomness at later times.

Stochastic TVP material models should also exhibit this characteristic. So, a

stochastic TVP material is one whose initial material state is random, but

which for a known initial geometry and a known loading history, responds

deterministically in an evolutionary or path dependent sense (given a realized

set of initial material parameters).

The geometry of the structure is another probabilistic initial value problem.

If one were to allow the structural geometry to change in an incrementally

stochastic way during some known loading history, then once again, there seems

to be no guarantee that a realizable initial structure exists that would

evolve in a deterministic way, under any realizable loading history, to reach

such a "non-deterministically changed" geometric state.

These concepts lead one to define a stochastic TVP structure as one whose

initial material state and whose initial geometric configuration are random,

but which under a known loading history, given a realized set of initial

material and geometric parameters, responds deterministically in an

evolutionary or path dependent sense.
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10.3.1 Proposed Solution Algorithm

10.3.1.1- Overview

First, define r-r(t) to be the response function of interest, where _ is

time. The function r is some subset of a complete realization, or

analysis result. A realization is referred to herein as a physical

occurrence out of many possible occurrences. For example: r could

represent the realized deflection history at some critical location in

the TVP structure; it could represent the realized history of a stress

component at some critical location; or, in the extreme case, it could

represent the entire solution to the structural analysis.

For the moment though, consider the case where r(_) is a scalar

quantity. The probabillstic problem is then to find, given the

statistical descriptions of the uncertain (or random) input parameters,

the statistical description of r-r(c). We choose, as this description,

the response's cumulative probability distribution function (CDF), which

will be denoted as c-c(r;r). Note that the response's CDF also evolves

with time. If r is not a scalar, for example if it is an n-vector

r-(r I ..... rn), then c is also an n-vector c-(c I ..... Cn) , with c i being

the CDF of r i (i-i .... ,n).

Let k-(k I .... ,kN) represent the N discrete random parameters that

describe the probabilistic TVP structure's random initial material

and/or geometric state, and the random loading history to which it is

subject, where the joint PDF of k is known. Also, denote the dependence

of r on k as r-r(k;t). The solution procedure presented below is based

on the previously cited, fast probability integration (FPI) method of

Wu. Given r-r(k;t0) and the joint PDF of k (t o is some fixed time), the

FPI algorithm provides an efficient and accurate method for the

calculation of c-c(r;t0). But, owing to the history dependence of the

TVP structure, the function r-r(k;t0) is difficult (or at least

potentially very time consuming) to calculate.

During the calculation of c-c(r;_o), the FPI code will need to evaluate

r-r(k;_0) for many different values of k. Conceptually then, for each

evaluation of r, a deterministic finite element analysis, for example,

based on the particular needed realization of k, needs to be performed

in an incremental fashion integrating from time 0 to time t o .

Obviously, this is unacceptable if too many evaluations of r are needed.

A reasonable way to avoid the calculation of so many realizations is to

construct an approximate analytical form for r-r(k;_0). The approach

taken here is quite simple and, in fact, is the same that has been

described by [3]. The idea is to pick several (say m) realizations of k

(call them ki, i-i ..... m), and calculate out to the latest time of

interest the m deterministic TVP boundary value problems based on each

of the ki's in turn. Then, at G0, a polynomial is fit to the m

(ki,ri-ri(ki;t0)) points, which provides an approximate analytical form

for r-r(k;t0) that the FPI program can quickly evaluate when calculating
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c-c(r;to). Polynomial fits made at various other (fixed) times can then

be used by the FPI program to calculate the evolution of c-c(r;_) in

time.

10.3.2 Example of Evolutionary Distributions

This example seeks to illustrate the nature of stochastic simulation of

evolutionary relationships, such as occurs for TVP material response.

The example will use pre-selected analytical response-time curves, which

is done so that the exact expression for c - c (r; t) can be obtained

and compared to the results of the FPI-based algorithm. The basic idea

of the algorithm is to fit approximate response functions to evolved

response-tlme curves at different time points, and to use the FPI

algorithm to define the CDF results at user-selected time points. It

will be seen that the algorithm is able to reproduce the exact results

wlth excellent agreement. It will also be seen that the statistical

nature of the answer is also evolving with time. In the next

sub-section, this FPl-based algorithm will be applied to a simulated TVP

material.

Let r be taken as a scalar (i.e., r-(rl) and c-(Cl) ) and let N-I (i.e.,

there is only one random variable, k-(kl)). For simplicity, denote (rl)

as r, (Cl) as c, and (kl) as k. The PDF taken for k is

p(k)--6k(k-l), O<k< I. (i0.i)

Now choose, for example, five different k values (m-5) to span the range

of interest, i.e., k-O.O05, 0.250, 0.500, 0.750 and 0.995, and for each

of these, say that a TVP boundary value problem was calculated out to a

time of C-4 via incremental finite element analysis, which yielded the

five traces of r vs r shown in the figure below.
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Figure 10.1(a). Realizations of Response vs. Time
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The traces .shown in the figure are actually plots of the response-time

curve

r - t_, (i0.2)

but, in general, the exact analytical form for these curves would not be

known and is used here only for the sake of demonstration. Next, at

some time of interest t-tO, the five (k,r) points are used to define a

fourth order polynomial, i.e.,

r- ao+ a,k+ a2kZ+ a3k 3+ a4k', (I0.3)

as the needed approximate analytical form for r-r(k;c0). For example,

at C0-2 one obtains,

ao-1.0000008300 at-0.6929735040 a z -0.2416176960 (10.4)

a3-0.0517377946 a4-0.0136692352;

and at tO-4 ,

a0-I.000036140 a_-1.378772670 az-I.020423210 (10.5)

a_-0.28682S09S a4-0,313897375.

The three equations above were used by the FPI program to obtain the

CDF's c(r;2) and c(r;4) as indicated, respectively, by the +'s and

squares in the figure below; the solid and dashed curves in the figure

are the exact analytical solutions described above. As can be seen,

this approach works quite well.

1.0

0.8

0.6

0.4

0.2

0.0

I 0"- 0 .¢1

4;1'" J

_ __ to=2.0

,.//: ........... to=4. 0//
.... F/="' f , _ _ .... ,

0.5 1.0 1.5 2.0 2.5 3,0 3.5 4,0 4.5

r

Figure lO.l(b). Calculated CDF at Two Time Levels
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If r is a scalar and k-(kl,k2) , then polynomial fits at various times

could be made to, e.g.,

r-bo+b,k,+b2k2+b=k_+b4k_ka+bsk_. (10.6)

a procedure which would'require that six realizations be obtained.

Obviously, if there are many random variables, or if polynomial fits of

high order are required, then the amount of computation can become

excessive.

For TVP boundary value problems though, a solution procedure that would

reduce the amount of computation is not readily evident, since, e.g.,

the perturbation technique of [4] does not appear to have an obvious

extension to this case of history dependence. If one were to imagine

the existence of a procedure that did allow for the calculation of only

a few (or, ideally, one) realizations, then the FPI program would not

have enough information to perform the evaluations of r-r(k;t0).

Consequently, if the perturbation technique was applied to obtain this

additionally required information by using, at cO, one of the

realizations as a base from which to perturb, then this would be

equivalent to having the material deform by a random process. As was

previously discussed, this is an unacceptable situation. Additional

research is needed if a solution procedure more efficient than the one

presented above is to be found.

Finally, it should be noted that perturbation techniques can be used for

history insensitive nonlinear problems (such as the finite elasticity of

a perfect rubber band), since it is irrelevant by what path one arrives

at the current state. In such a case, a sensible algorithm would be to

track a single realization r-r(k;t), e.g., the one corresponding to the

mean value of k. Then, at some t 0 where c-c(r;t0) is desired, the

r-solution obtained from the mean value of k could be used as a base

from which to iterate (e.g., using the equations of finite elasticity)

toward and to any new r-r(k;c0) that the FPI program may require.

10.3.3 Probabillstic TVP Tension Test

As an example of probabilistic TVP material modeling, the above

procedure is applied to a high-temperature (or creep) tension test. The

creep model used is based on the mechanism of grain boundary sliding

with grain boundary diffusional accommodation, and is similar in spirit

to the model of [5].

The polycrystalline material is idealized as being a two-dimensional

array of hexogonal grains, as depicted in Part (a) of the figure below,

with the grain°s current size and shape being defined by the lengths and

d and i. As indicated in the figure, the assemblage is subjected to an

overall tensile true stress o2, with the other overall in-plane stress

components being zero. Under such a loading, the deformation is assumed

to occur by grain boundary sliding in the mode shown by Part (b) of the

figure, where the left and right grains are being "pulled in" by the
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"void" on the grain boundary BE. In this state, the grain boundaries

AB, BC, DE and EF have (local) compressive stresses acting normally

across them, and the grain boundary BE has a tensile normal stress

acting across it.

The local normal stresses lead to diffusional mass flux along the grain

boundaries in the senses indicated by the arrows, and this removes mass

from along the four oblique grain boundaries and deposits it in the

"void" of grain boundary BE. In this way, the deformation is

diffuslonally accommodated.

02

0 i =0

Figure lO.2(a). Idealized Two-Dimenslonal Microstructure

Figure lO.2(b). Grain Boundary Sliding Deformation Mode
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In a method similar to that of [5], the grain boundary mass flux is

taken proportional to da./dS (where a. is the normal stress acting

across the grain boundary, and S is the distance along the grain

boundary). This, coupled with mass conservation allows one to find, for

a given overall inelastic strain rate, _, the corresponding

distribution of oA along the grain boundaries. Force equilibrium

applied to certain grain cross-sections, along with the assumption that

the grain boundaries support no shear stress, then provides the

corresponding value of aa.

The procedure [6] yields, for this orthotropic deformation mode, the

simple flow rule

, 24$-3D e_ =-e 2 e3=O.
• ", ', (10.7)

e2 =a_f(A)°2

where _I (1-1,2,3) are the three inelastic logarithmic strain rates along

each of the coordinate axes (there are no shear strains), d is the

current grain width as indicated in the above figure, and D is a

diffusion coefficient (to be defined below). The function f(A) is

/(A)" A _÷ A- A

where A is the current grain aspect ratio (a = i corresponds to the

grains being regular hexagons). In the previous two equations, the

current size and shape of the grains are determined from the simple

evolution equations

i-l_ 2 d-dE,, with ¢,-_+_[ (10.9)

where _, and _ (i-I,2,3) are, respectively, the total and elastic

logarithmic strain rates. The diffusion coefficient D is given by

O BT Db. Dbex p Qb R-N.,B, (10.10)

where B is Boltzmann's constant, T is absolute temperature, and Nav is

Avogadro's number. The grain boundary thickness 6 is assumed to remain

constant with time, as are the constants _ (the molecular volume), D_

(the limiting grain boundary diffusivity) and Qb (the grain boundary
diffusion activation energy).
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The flow rule is implemented as follows.

as isotropic, i.e.0

First the elasticity is taken

(i0.ii)

where _ and k are, respectively, the shear modulus and Lam4 constant, @,

(i-i,2,3) are the true normal stress rates along each of the coordinate

directions (there are no shear stresses), and where the summation

convention is used. Next, combining the last of the above two

equations, the rate constitutive law is written as

" (10.12)o," C,i_ i- Y,, with Y,- C,i_I.

Now, a uniaxial tension test with a prescribed tensile strain rate is

modeled by prescribing the two-dimenslonal model's effective strain rate

%E. Thus, the conditions

_2 2 (10.13)_,-O _-0 _" _(c,+_)-prescribed rate

are used when eqn. (10.8) is integrated through time to obtain the

two-dlmenslonal model's stress-strain history. Finally, from this

history, the effective (or unlaxlal) strain _EVS effective (or

uniaxlal) stress

4o - o.o ÷ (lO. 14)

curve is obtained.

The discrete points in the figure below show two experimental uniaxial

stress-strain curves for BI900+Hf, a Ni-based superalloy, pulled at a

constant strain rate of 8.3 x i0 "5 sec °I [7]. The continuous curves in

the figure are the model results, also for _E- 8.3 x I0 -5 sec-i The

grain size of this material was quoted as 75 pm, and this was

incorporated into the model by setting 1 - 75 pm and A - 1 as initial

conditions. "Handbook" values for Ni [8] were used for 6D_ (- 3.5 x

10 -15 m3/sec) and _ (- 1.09 x 10 -29 m3), and Qb - 72.5 kJ/mole was also

used. Reference [8] quotes Qb " 115 kJ/mole for Ni. At T - I144K, the

elasticity was specified as E - 165 GPa (Young's modulus) and

v-k/(k÷p)/2-0.48 (Poisson's ratio), and at T-1255K the specification

was E-150 GPa and v-0.48. As is seen, the model can be made to fit the

experimental data reasonably well with reasonable values of the material

constants, especially at the higher temperature.
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Figure 10.3. Comparison of Creep Model vlth Experimental

Uniaxlal Stress-Straln Data

In the current probabillstlc problem, both the deformation and the

material properties of the tensile bar are taken as being uniform with

respect to space. The T-1255K case is considered, and all of the

constants are as above, except that now E and _D are random, i.e.,

p(3A+2_) (i0.15)

E X+p =kl Qb=k2"

Also, the effective stress is taken as the response, i.e., oE=r.

The variables E and Qb are assumed to be statistically independent, and

each has a truncated normal distribution as its PDF. The mean value of

E, i.e., p(E), is chosen as 150 GPa, and P(Qb) is chosen as 72.5 k3/mole.

The standard deviations for the problem are o(E)- i0 GPa and o(Qo)- 0.5

k3/mole. The cut-off values for both of these PDF's are taken to occur

at plus and minus three standard deviations from the mean.

In order to construct accurate representations of r - r(k; c0) ' 25

separate realizations were calculated, each corresponding to one of the

possible combinations of E - 120.5, 135.0, 150.0, 165.0 and 179.5 GPa,

and _b - 71.05, 71.75, 72.50, 73.25 and 73.95 kJ/mole. The 25 resulting

stress-strain curves are shown in the next figure, and at each of the

three different time levels shown, i.e., c0 - i0.0 sec (EE -- 8.3 X
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i0"4), 67.5 sec (e( - 5.6025 x i0 "3) and 300. sec (cE = 2.49 x IO-2), the

25 (k, r) points were fit to a fourth order, two-dimensional Lagrangian

polynomial, i.e., a polynomial whose individual terms are

l k, _f k_ k: (zo.16)

z k_kz k 4k2 klk2 klk_ ]k2

klk2 k,k2 klk z.

23 33 4.3
k_ ktk_ klk 2 klk 2 k,k 2

2 4 3 4 4 4
k_ kjk_ knk 2 k)k 2 klk 2

"_0__. 6.0-

5.0

4.0

3.0

2.0

tO

0.0

I0.0 sec 67.5 sec 300.0 sec

.... I " " " " T " " ' ' i " ' " " l " " " .... ' I

0.000 0.005 0.010 O.Ot5 0.020 0.025 0.030

_r

Figure 10.4. Stress-Strain Realizations for the

Probabilistlc Creep Problem

The three resulting polynomials were then used by the FPI program to

obtain the CDF's c(oE; i0.0 sec), c(a(; 67.5 sec), and c(a(; 300.0 sec),

which are shown in the following figures. The probability levels of c

are expressed in terms of the standard normal unit u, i.e.,

I I (_2) °E-P(°_) (10.17)c=_+_ert with u- o(o() '

where "erf" is the error function (a normal distribution plots as a

straight line on such a graph). As is seen, the character of the

distribution changes in time: at to - I0.0 and 300.0 sec, fairly high

curvatures are exhibited in the distributions' tails, while at c0 - 67.5
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sec the curvature is less pronounced. This is due to the fact that, at
$0 - i0.0 sec, E is dominant (i.e., _a[/_Qb~O)and at to- 300.0 sec Q_ is
dominant (_o[/_E-O), while at t o - 67.5 sec neither dominates.

"I

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0 -

-4.0
90.0

-'- .

.... I .... I .... ! .... I .... I .... I .... I .... I

_.o ,oo.o ,os.o ,,o.o ,m.o m.o ,_.o ,_o.o
c_E[ MPo]

Figure 10.5(a). Calculated CDF for the Creep Problem at i0.0 sec
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Figure 10.5(b). Calculated CDF for the Creep Problem at 67.5 sec
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Figure 10.5(c). Calculated CDF for the Creep Problem at 300.0 sec
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-THE MOST PROBABLE POINT LOCUS .METHOD FOR CONSTRUCTING THE

PROBABILITY DISTRIBUTION OF A RESPONSE VARIABLE

S_RY

The most probable point locus method (MPPL) is an iterative process to

compute the CDF of a response variable (i.e., a function of several random

variables). It was shown that the MPPL CDF converges =o the exact after one

iteration in five examples of non-linear response functions and non-normal

variates. This is "good news" when the response function is implicit because

the number of costly function evaluations required by b_PL is limited relative

to other methods for constructing CDF's.

THE MOST PROBABLE POINT LOCUS (MPPL) ALGORITHM

Consider a response function

z = z(_)

where _ is a vector of n random design factors. Z can be either explicit

or implicit. Determine the CDF of Z, denoted as FZ. If Z is an explicit

function of _, then the construction of FZ is straightforward using Monte

Carlo or fast probability integration. All numerical reliability methods

require many (i00 to i0,000) function evaluations, a very fast operation

with a digital computer if Z is an explicit function of X.
%

However, when Z is an implicit function (e.g., Z(X) defined only

through a finite element code) a single function evaluation may be costly.

So the fundamental question is how do we construct a hi6h quality CDF of

Z with a very minimum of function evaluations?

The most probable point locus method (MPPL) as proposed by Y. T. Wu

may be close to the optimum in requiring a minimum number of function
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evaluations relative to the accuracy of FZ. There is no formal proof of

this, but intuition suggests that it would be difficult to produce a

reasonable estimate of FZ with fewer function evaluations.

The basic MPPL scheme, an iterative process, is described in some

detail in Table i. A plot of the CDF as constructed by four MPPL itera-

tions (moves) is shown in Fig. i. But the key issue is the number of

function evaluations required for each move. A summary of the function

evaluations is shown in Table 2 for two different sets of points used to

estimate the CDF. _en nine points (four points on each side of the mean)

are used to construct the CDF, it is expected that FZ would be more accur-

ate than the seven point approximation. However, experience has shown

that high quality CDF's can be constructed with the seven point system.

EXAMPLES

Attached are five examples. In each case the response function is

non-linear and/or some or all of the variates are non-normal. In all

cases a nine point CDF scheme was employed and the CDF curves shown in the

figures were fit by a cubic spline in the graphics program.

For each example there are four plots.

i. The CDF based on the linear approximation to the response function

(Step 5 in Table i).

2. The CDF after the ist move.

3. The CDF after the 2nd move.

4. The CDF after the 3rd move.

(Step 6 in Table i).

(Step 9 in Table I).

(Step i0 in Table i).

The CDF of Z by the MPPL approximation is compared to the exact in

all of the figures. Upon examination of the curves, the following general

conclusions can be drawn.
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i. FZ estimated from a linear approximation to the response function is

generally a poor approximation to the exact.

2. The first moveproduces, in all cases, a "good" approximation to the

exact.

3. Little improvement is realized by the second and third moves.

These results are good news relative to the goal of limiting the

numberof function evaluations required. Assumingthat a seven point scheme

is used, the number of function evaluations is shown as a function of the

number of variables in Fig. 2. Clearly, computer costs for the Ist move

CDF will be small relative to the 2nd and 3rd iteration. A general

(qualitative) conclusion is that the ist move CDF will be the most "efficient."
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Table 1

FLOWCHARTFORTHEMOSTPROBABLEPOINTLOCUSPROBLEM

Input:

i. Responsefunction, (explicit or implicit); Z = Z(_)

2. Mean, std. dev. of each basic variable, Xi; i = 1,2, . • N

Evaluate Z at mean values u of _ and at perturbed values of
%

(_ + 0.i o ) of each X all other variables equal the means•
i i'

There are a total of N + 1 function evaluations.

STEP 1

Using results of Step i, estimate uZ and o Z using the
"b

approximate forms .... _Z Z(U)
"b

//SZ_ 2 2'

oz oi

Derivatives evaluated from the perturbation results of Step i.

Define the sample space for Z

Z : _Z + -i°z]

• . , 0, i, , , , 3, 4

In this example, the CDF will be defined

by 9 points, but the number is arbitrary

STEP 3

STEP 2

Using the results from Step i, expand

Z as linear functions about

Use Wu/FPI to compute:

i. _° for each Z.
] ]

2.

STEP 4

Z = a + la. X.
O l 1

Design point for each Z., denoted as X.
] ]

THIS IS THE FIRST ESTImaTE OF THE CDF OF Z

STEP 5
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ist MOVE[ Improve the CDF of Z by an improved value of Z.
,O

., namely the value of Z.j at the design point _jat each 63

from Step 5.

zj = z(_j)

j = -4, -3, -2, -I, I, 2, 3

In this example, there are eight function evaluations.

The choice is arbitrary. There could be fewer.

To further improve the CDF, obtain perturbed solutions

for Z at all _j, e.g., Z(X I + .i_ x , X2) for an example

of two variables. Here there willlbe a total of N

function evaluations.

Expand Z as a linear function at each X
_J

STEP 8

2nd MOVE: Improve the estimate of the CDF of Z by an

improved B at each Z. of Step 6. For each Z of Step 8
J

use Wu/FPI to compute,

i. B. for each Z.
J J

2. Design point for each Z denoted as X.
3 _J

STEP 6

STEP 7

STEP 9

3rd MOVE: Improve the CDF of Z by an improved value

of Z. at each 8.; namely the value of Z. at the design
J , J ,

point _j from step 9. Compute Zj = Z(_)

j = -4, -3, -2, -i, i, 2, 3 + 4

Here there are eight function evaluations.

STEP i0

At this point, the iteration process could be continued by repeating Steps 7

through i0. However, it is thought that there will be little improvement

in the quality of the CDF.
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Table 2. Number of Function Evaluations Required

F (z)
z

J Points at which

CDF is to be

evaluated. In this

example, J = 7.

z

CDF at mean evaluated only

one time at beginning of

process

N = number of random variables

First Estimation: Linear

performance function

1st Move. Function evaluation at

each design point (except mean).
J-I evaluations

2nd Move. Construct linear function

at each of the J-1 design points. At

each point, need only the perturbed
value for each of the N variables

N(J- 1 evaluations)

3rd Move. Function evaluation at

each design point (except mean).
J-I evaluations

Total Function Evaluations

N+I

N+J

J(N + I)

J(2 + N) - 1

214



Fig. 1 Construction of the CDF of Z by the Iterative MPPL

/

/

FIRST ESTIMATE

STEP 5

3rd MOVE

STEP i0

ist

MOVE; STEP 9

OVE; STEP 6

REFINED EST. OF CDF OF Z

AFTER 3 MOVES

Z °

J
Z.
J _Z

Z
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A STUDY ON THE PERFORMANCEOF AMVFO

PRELIMINARY REMARKS

Growing experience by all participants in PSAM is suggesting that

accurate estimates of the CDF of a response variable can be made by MPPL

with one move (AMVFO). This result is particularly useful for NESSUS

because a "high quality" CDF can be constructed with a minimum of function

evaluations.

The rapid convergence of MPPL was first observed by Y. T, Wu, the author

of MPPL. But now there has been extensive experience with this algorithm.

This report documents results obtained at UA.

A SUMMARY OF _MVFO EXPERIENCES AT UA

Attached are reference to 3n examples for which AMVFO solutions have

been obtained. Unique to each example are:

l) The functional form, Z = Z(_) where X is the vector of independent

random variables.

2) The distribution family for each Xi-

3) Statistical parameters for each Xi.

For the first 18 examples, there are direct comparisons between the

AMVFO generated CDF and the exact. The exact solution is obtained by

Wu/FPI. Percent errors on B ¢-I
= (FZ) are presented.

For Examples 19 through 30, no specific comparisons are reported

because there was very close agreement between the two solutions.
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A CLOSER LOOK AT THOSE CASES WHERE ERRORS ARE THE LARGEST

Some additional studies were made of those cases where the apparent

errors in AMVFO were the largest, i.e., Examples I0, 15, 16, 17, and 18.

Plots of the CDF are included for each of these examples. Note that the

"exact" solution is obtained by Wu/FPI. Experience has indicated that

Wu/FPI, used for the exact solution, may have as much as a 5% error (and

sometimes a little higher). Errors in Wu/FPI could explain at least part

of the observed differences. In fact, for Examples g and lO, the results

of Wu/FPI differ depending on which variable is chosen as the dependent

variable in the perfo.rmance function as specified in the program.

As an independent check, a Monte Carlo program (using the Harbitz

algorithm) was employed to compute point probabilities at selected Z-values.

The results are presented for each of the five examples mentioned above.

Generally these results seem to confirm that Wu/FPI is close to tbe exact

solution, and that errors are introduced principally by the AMVFO process.

To pursue this issue, MPPL is executed for three moves for each of the

five examples. Percent deviations with the Monte Carlo solution are listed.

Upon review of the results, it is not clear, in general, that the 3-move MPPL

Solution will always converge to the exact.

CONCLUSIONS

It is difficult to draw general conclusions from this limited study

of 30 examples. However, on the basis of this experience, AMVFO seems to

robust. The largest errors in B = ¢-l(F Z) were about I0%.be

It comes as no surprise that deviations between the AMVFO and exact

CDF's are largest in the tails. Unfortunately, there does not seem that

there is anything that can be done a priori to predict the magniCude of

the error.
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It also appears that generally additional moves (the 2nd and 3rd)

in MPPL do not consistently ana substantlaliy improve the estimate of the

CDF. With the exception of special cases in the extreme tails of the

distribution there does not seem to be much value gained by continuing

beyond the AMVFO solution.

This study should continue to examine functional forms which may cause

problems.
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EXAMPLE 1 =

LIMIT STATE FUNCTION : Z = 3X + 2Y + W

VARIABLE-DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR

X-WEI(10.,I.), Y-FRE(10.,I.), W-EVD(10.,I.)

LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

45.0330 -3.400100 .336858E-03 -3.4030 .333303E-03

48.7750 -2.665400 .384488E-02 -2.6660 .383803E-02

52.5170 -1.897600 .288743E-01 -1.8980 .288480E-01

56.2580 -1.029500 .151622E+00 -1.0310 .151270E+00

63.7420 1.075000 .858813E+00 1.0760 .859036E+00

67.7420 2.036900 .979170E+00 2.0370 .979175E+00

71.2250 2.758100 .997093E+00 2.7590 .997101E+00

74.9670 3.273400 .999469E+00 3.2740 .999470E+00

.0853

.0225

.0211

.1457

.0930

.0049

.0326

.0183

EXAMPLE 2 :

LIMIT STATE FUNCTION : Z = X Y

VARIABLE DIST. (MEAN/MED,STD/COV) :

X-WEI(10.,2.), Y-FRE(8.,I.)

(MED AND COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

13.4880 -4.233100 .I15321E-04

28.3960 -2.957100 .155281E-02

44.8540 -1.955300 .252738E-01

62.0110 -1.007700 .156799E+00

99.4330 1.050400 .853233E+00

122.0900 2.003000 .977411E+00

145.6800 2.712200 .996658E+00

168.0000 3.214200 .999346E÷00

-4.0478 .258636E-04

-2.8816 .197837E-02

-1.9195 .274605E-01

-.9821 .163025E+00

1.0854 .861128E+00

2.0587 .980239E+00

2.7559 .997073E+00

3.2352 .999392E÷00

4.3774

2.5532

1.8309

2.5404

3.3321

2.7808

1.6112

.6534



EXAMPLE 3 :

LIMIT STATE FUNCTION : Z = X**2 +

VARIABLE DIST. (MEAN/MED,STD/COV)

X-N(10.,1.), Y-N(10. ,i. )

0.5"Y*'2

: (MED AND COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

74.9590 -4.000000 .316860E-04 -4.0180 .293612E-04

91.0170 -3.000000 .134997E-02 -3.0250 .124323E-02

108.8800 -2.000000 .227501E-01 -2.0260 .213823E-01

128.5400 -1.000000 .158655E+00 -1.0230 .153154E+00

173.2600 1.000000 .841345E+00 .9780 .835963E+00

198.3200 2.000000 .977250E+00 1.9760 .975923E+00

225.1800 3.000000 .998650E+00 2.9750 .998535E+00

253.8500 4.000000 .999968E+00 3.9720 .999964E+00

.4500

.8333

1.3000

2.3000

2.2000

1.2000

.8333

.7000

EXAMPLE 4 :

LIMIT STATE FUNCTION : Z = X'Y**2 + Xt*3

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND

X-WEI(I.,0.1), ¥-EVDCl.,0.1)

COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA

.7113 -3.205850 .673385E-03 -3.2030

.9482 -2.534135 .563629E-02 -2.5350

1.2371 -1.824495 .340386E-01 -1.8210

1.5857 -1.021351 .153544E+00 -1.0190

2.4829 1.054400 .854150E+00 1.0710

3.0353 2.193113 .985850E+00 2.1960

3.6866 3.137531 .999148E+00 3.1380

4.4524 3.899628 .999952E+00 3.8960
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Pf

.680084E-03

.562239E-02

.343034E-01

.154101E+00

.857915E+00

.985954E+00

.999149E+00

.999951E+00

% ERROR (BETA)

.0889

.0341

.1916

.2302

1.5744

.1316

.0149

.0930



EXAMPLE5 :

LIMIT STATE FUNCTION : Z = (X'Y)**2 + 0.5"W*'3

VARIABLE DIST. (MEAN/MED,STD/COV} : (MED AND COV FOR

X-N(10.,1.), Y-N(10.,1.), W-N(10.,1.)

LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

3119.8560 -3.998916 .318315E-04 -3.9370 .412708E-04 1.5483

4335.4460 -2.999298 .135308E-02 -2.9550 .156341E-02 1.4769

5923.2870 -1.999437 .227805E-01 -1.9630 .248230E-01 1.8224

7952.9570 -.998969 .158905E+00 -.9620 .168025E+00 3.7007

13645.9300 .998969 .841095E+00 1.0290 .848260E+00 3.0063

17478.2100 1.999437 .977220E+00 2.0280 .978720E+00 1.4286

22090.2900 2.999298 .998647E+00 3.0250 .998757E+00 .8569

27581.5900 3.998916 .999968E+00 4.0230 .999971E+00 .6023

EXAMPLE 6 :

LIMIT STATE FUNCTION : Z = X'Y**2 + 0.5"W**4 + 0.5"U*'3

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.}, Y-N(10.,1.), W-N(10.,1.}, U-N(10.,1.}

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

2025.2320 -3.998916 .318315E-04 -3.8050 .709262E-04 4.8492

2614.3090 -2.999298 .135308E-02 -2.9390 .164643E-02 2.0104

3495.9250 -1.999437 .227805E-01 -1.9840 .236278E-01 .7721

4757.9910 -.998969 .158905E+00 -.9980 .159140E+00 .0970

8833.0310 .998969 .841095E+00 .9980 .840860E+00 .0970

11879.7500 1.999437 .977220E+00 2.0050 .977519E+00 .2782

15774.3900 2.999298 .998647E+00 2.9990 .998646E÷00 .0099
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EXAMPLE 7 :

LIMIT STATE FUNCTION : Z = X'Y**2 + 0.5"W*'4 + 0.5"U*'3

VARIABLE-DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-EVD(10.,I.), W-FRE(10.,I.)

U-LN(9.95037, .i)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

2269.4400 -8.555800 .585269E-17 -8.4590 .134840E-16 1.1314

3086.2300 -4.757521 .981134E-06 -4.7200 .118062E-05 .7887

4029.0300 -2.312219 .103828E-01 -2.3080 .104995E-01 .1825

5139.9380 -.775700 .218963E+00 -.7750 .219170E+00 .0902

8194.8680 .932774 .824532E÷00 .9330 .824590E+00 .0242

10287.7100 1.448784 .926301E+00 1.4490 .926331E+00 .0149

12837.5400 1.856761 .968327E+00 1.8560 .968273E+00 .0410

15906.5400 2.192935 .985844E+00 2.1920 .985810E+00 .0426

EXAMPLE 8 :

LIMIT STATE FUNCTION : Z = X'*5 +

VARIABLE DIST. (MEAN/MED,STD/COV)

X-N(1.,0.1), Y-N(1.,0.1)

AND COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

.3769 -3.998920 .318309E-04

.6003 -2.999300 .135307E-02

.9233 -1.999400 .227825E-01

1.3774 -.998970 .158905E+00

2.8356 .998970 .841095E+00

3.9358 1.999400 .977218E+00

5.3604 2.999300 .998647E+00

7.1774 3.998920 .999968E÷00

-3.9950 .323621E-04

-3.0110 .130201E-02

-2.0180 .217956E-01

-1.0210 .153627E+00

.9770 .835715E+00

1.9730 .975752E+00

2.9630 .998477E+00

3.9430 .999960E+00

.0980

.3901

.9303

2.2053

2.1993

1.3204

1.2103

1.3984



EXAMPLE9 : CASEI

LIMIT STATEFUNCTION: Z : (X'Y)**2

VARIABLE-DIST. (MEAN/MED,STD/COV):

X-N(10.,1. ), Y-N(10.,1.),
(EXACTSOLUTIONFROMFPI;

AMVFOSOLUTION

Z VALUE BETA Pf

+ 0.5"W*'4 + 0.5"U*'3

(MED AND COV FOR LN DIST.

W-N(10.,1.), U-N(10.,1-)

USE X AS X(1) )

EXACT SOLUTION

BETA Pf % ERROR

ONLY)

(BETA)

7495.8040 -2.999298 .135308E-02 -3.0460 .I15961E-02

9087.6890 -2.249443 .122421E-01 -2.2930 .I09240E-01

10934.8100 -1.499299 .668981E-01 -1.5300 .630084E-01

13063.1600 -.748760 .227001E+00 -.7790 .217990E+00

18273.8400 .748760 .772999E+00 .7030 .758972E+00

21414.4600 1.499299 .933102E+00 1.4500 .926471E+00

24952.9000 2.249443 .987758E+00 2.1890 .985702E+00

28921.4600 2.999298 .998647E+00 2.9330 .998321E+00

1.5571

1.9363

2.0477

4.0387

6.1114

3.2881

2.6870

2.2105

EXAMPLE 9 ; CASE II

LIMIT STATE FUNCTION : Z = (X'Y)'*2 + 0.5"W*'4 +

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR

X-N(10.,1.), Y-N(10.,1.), W-N(10.,1.), U-N(10.,1.)

(EXACT SOLUTION FROM FPI; USE Z AS X(1) )

MVFO SOLUTION EXACT SOLUTION

VALUE BETA Pf BETA Pf

0.5"U''3

LN DIST. ONLY)

% ERROR (BETA)

7495.8040 -2.999298 .135308E-02 -3.0290 .122689E-02

9087.6890 -2.249443 .122421E-01 -2.2760 .114230E-01

10934.8100 -1.499299 .668981E-01 -1.5200 .642555E-01

13063.1600 -.748760 .227001E+00 -.7670 .221541E+00

18273.8400 .748760 .772999E+00 .7310 .767610E+00

21414.4600 1.499299 .933102E+00 1.4790 .930430E+00

24952.9000 2.249443 .987758E+00 2.2290 .987093E+00

28921.4600 2.999298 .998647E+00 2.9800 .998559E+00

.9903

1.1806

1.3807

2.4360

2.3719

1.3539

.9088

.6434



EXAMPLEi0 ; CASEI

LIMIT STATE FUNCTION : Z = (X'Y)**2 + 0.5"W*'4 + 0.5"U*'3

VARIABLE-DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST.

X-N(10.,1.), Y-EVD(10.,I.), W-FRE(10.,I.), U-LN(9.95037,.I)

(EXACT SOLUTION FROM FPI; USE X AS X(1) )

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf

ONLY)

% ERROR (BETA)

7532.7660 -3.627000 .143402E-03 -3.6240 .145076E-03 .0827

9099.4890 -2.606500 .457368E-02 -2.6210 .438365E-02 .5563

10934.6500 -1.635000 .510245E-01 -1.6540 .490637E-01 1.1621

13062.7800 -.725965 .233930E+00 -.7390 .229953E+00 1.7955

18284.3500 .805360 .789694E+00 .7780 .781716E+00 3.3972

21421.7400 1.429682 .923596E+00 1.3630 .913559E+00 4.6641

24944.5600 1.957630 .974863E+00 1.8460 .967554E+00 5.7023

29364.4100 2.482820 .993483E+00 2.2000 .986097E+00 11.3911

EXAMPLE i0 ; CASE II

LIMIT STATE FUNCTION : Z = (XtY)**2 + 0.5"W*'4 + 0.5"U*'3

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-EVD(10.,1.), W-FRE(10.,1.), U-LN(9.95037,.I)

(EXACT SOLUTION FROM FPI; USE Z AS X(1) )

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

7532.7660 -3.627000 .143402E-03 -3.6210 .146769E-03 .1654

9099.4890 -2.606500 .457368E-02 -2.6170 .443535E-02 .4028

10934.6500 -1.635000 .510245E-01 -1.6540 .490637E-01 1.1621

13062.7800 -.725965 .233930E*00 -.7340 .231474E+00 1.1068

18284.3500 .805360 .789694E+00 .8080 .790455E+00 .3278

21421.7400 1.429682 .923596E*00 1.4020 .919542E+00 1.9362

24944.5600 1.957630 .974863E*00 2.0470 .979671E+00 4.5652

29364.4100 2.482820 .993483E*00 2.4670 .993187E+00 .6372
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Monte Carlo Solution for Selected Points in Example I0

Z value 29364.4 24944.6

B, AMVFO 2.483 1.958

B, Wu/FPI 2.200 1.846

B, Monte Carlo {Harbitz) 2.350 1.890

95% Confidence Intervals (2.321, 2.384) (1.858, 1.924)

for Monte Carlo

% Error in AMVFO relative 5.6 3.6

to Monte Carlo

MPPL Solution after 3rd move 2.500 1.967

4.1% Error in MPPL (3 moves)

relative to Monte Carlo

6.3
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EXAMPLE ii :

LIMIT STATE FUNCTION : Z = (L/D**4)*(6.79*Q*L**2/E+I0.186*A*T/G)

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

Q-N(28.56,2.856), L-N(10.,.2), E-N(I.E7,5.ES),D-N(.75,.015)

A-N(4.0,0.08), G-N(3.8E6,1.9E5), T-N(II5.,II.5)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

.0609 -4.000000 .316860E-04 -3.9660 .365606E-04 .8500

.0691 -3.000000 .134997E-02 -2.9850 .141796E-02 .5000

.0783 -2.000000 .227501E-01 -1.9950 .230214E-01 .2500

.0887 -1.000000 .158655E+00 -I.0000 .158655E+00 .0000

•1133 1.000000 .841345E÷00 .9980 .840860E+00 .2000

.1279 2.000000 .977250E*00 1.9940 .976924E+00 .3000

.1443 3.000000 .998650E+00 2.9870 .998591E+00 .4333

.1627 4.000000 .999968E÷00 3.9750 .999965E+00 .6250

EXAMPLE 12 :

LIMIT STATE FUNCTION : Z = (L/D**4)'(6.79*Q*L**2/E+I0.186*A*T/G)

VARIABLE DIST. (MEAN/MED,STD/COV) : (M_D AND COV FOR LN DIST. ONLY)

Q-EVD(28.56,2.856), L-N(10.,.2}, E-WEI(I.E7,5.E5), D-N(.75,.015)

A-LN(4.0,0.02), G-LN(3.SE6,0.05), T-FRE(I15.,II.5)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

_____.p___

.0615 -4.361100 .647553E-05 -4.3660 .633206E-05 .1124

.0694 -3.211800 .659594E-03 -3.2200 .641016E-03 .2553

.0784 -2.091200 .182550E-01 -2.0940 .181299E-01 .1339

.0886 -.991910 .160621E÷00 -.9990 .158897E+00 .7148

.1133 1.040600 .850969E+00 1.0580 .854972E+00 1.6721

.1278 1.928200 .973085E+00 1.9520 .97453!E+00 1.2343

.1432 2.737600 .996905E÷00 2.7480 .997002E+00 .3799

.1586 3.455000 ._99725E*00 3.4180 .999685E+00 1.0709



EXAMPLE13 :

LIMIT STATE FUNCTION : Z = (X Y)**2

VARIABLE DIST. (MEAN/MED,STD/COV) :

X-WEI(10.,2.), Y-FRE(8.,I.)

(MED AND COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

807.3593 -2.955106 .156288E-02

1654.0090 -2.193385 .141398E-01

2846.9300 -1.484133 .688869E-01

4408.6280 -.764057 .222417E+00

8896.7500 .791370 .785636E+00

12162.9900 1.551912 .939658E+00

16417.0000 2.205871 .986304E+00

21247.7700 2.714446 .996681E+00

-2.8814 .197963E-02 2.4942

-2.1523 .156868E-01 1.8731

-1.4550 .728347E-01 1.9630

-.7395 .229802E+00 3.2141

.8202 .793949E+00 3.6431

1.5951 .944655E+00 2.7829

2.2626 .988170E+00 2.5717

2.7580 .997092E+00 1.6045

EXAMPLE 14 :

LIMIT STATE FUNCTION : Z = (X Y)**3

VARIABLE DIST. (MEAN/MED,STD/COV) :

X-WEI(10.,2.), ¥-FRE(8.,I.)

(MED AND COV FOR LN DIST. ONLY)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA )

90357.2400 -1.953609 .253737E-01

151943.600 -1.483706 .689435E-01

238449.100 -1.007343 .156885E+00

355325.400 -.516413 .302783E+00

714129.700 .529881 .701903E+00

982362.300 1.049881 .853114E+00

1341195.00 1.552116 .939683E+00

1822217.00 2.004785 .977507E*00

-1.9184 .275301E-01

-1.4547 .728762E-01

-.9817 .163124E+00

-.4919 .311395E+00

.5525 .709697E+00

1.0841 .860840E+00

1.5948 .944622E+00

2.0606 .980329E+00
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1.9550

2.5456

4.7468

4.2687

3.2593

2.7501

2.7841



EXAMPLE 15 :

LIMIT STATE FUNCTION : Z = X Y W

VARIABLE DIST. (MEAN/MED,STD/COV)

X-N(10.,2.), Y-N(8.,1.),

AMVFO SOLUTION

Z VALUE BETA Pf

Iii.5100 -3.998916 .318315E-04

177.6034 -2.999198 .135353E-02

259.9768 -1.999437 .227805E-01

360.2393 -.998969 .158905E*00

620.8680 .998969 .841095E+00

784.4523 1.999437 .977220E+00

972.3621 2.999298 .998647E+00

1186.2070 3.998916 .999968E+00

: (MF.D AND COV FOR LN DIST. ONLY)

W-N(6.,0.8)

EXACT SOLUTION

BETA Pf % ERROR (BETA)

-3.6840 .I14833E-03 7.8750

-2.8440 .222762E-02 5.1747

-1.8960 .289800E-01 5.1733

-.9200 .178786E+00 7.9050

1.0660 .856788E+00 6.7101

2.0590 .980253E+00 2.9790

3.0490 .998852E+00 1.6571

4.0320 .999972E+00 .8273
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Monte Carlo Solution for Selected Points in Example 19

Z value 111.51

B, AMVFO -3.998

B, Wu/FPI -3.684

B, Monte Carlo (Harbitz) -3.669

95% Confidence Intervals (-3.649; -3.698)

for Monte Carlo

% Error in AMVFO relative

to Monte Carlo 9.0

MPPL Solution after 3rd move -3.778

% Error in MPPL (3 moves)

relative to Monte Carlo

3.0

177.60

-2.999

-2.844

-2.813

(-2.792, -2.839)

6.6

-2.940

4.5

259.98

-1.999

-1.896

-_.886

(-1.863,

5.(I

-l .980

5.0
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EXAMPLE 16 :

LIMIT STATE FUNCTION : Z = X Y W

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR

X-WEI(10.,2.), Y-FRE(8.,I.), W-EVD(6.,0.6)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf

77.3040

156.9944

253.7254

360.4638

619.1482

787.8300

984.0049

1151.5420

-4.388275 .571725E-05 -4.0360 .271985E-04

-3.088883 .100462E-02 -2.9370 .165709E-02

-2.019468 .217192E-01 -1.9400 .261898E-01

-1.006387 .157115E+00 -.9430 .172840E+00

1.043337 .851604E+00 1.1170 .868003E+00

1.897304 .971106E+00 2.0220 .978412E+00

2.665438 .996156E+00 2.7850 .997324E+00

3.310339 .999534E+00 3.2820 .999485E+00

LN DIST. ONLY)

% ERROR (BETA)

8.0276

4.9171

3.9351

6.2985

7.0603

6.5723

4.4856

.8561
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Monte Carl_Solution for Selected Points in Example 16

Z value 77.3

B, AMVFO -4.388

B, Wu/FPI -4.036

B, Monte Carlo (Harbitz) -4.023

156.99 619.15

-3.088 I l.0433

1

-2.937 l.ll7

-2.919 1.102

95% Confidence Intervals

for Monte Carlo

% Error in AMVFO relative

to Monte Carlo
ii

(-3.999, -4.055)

i,

9.1

(-2.895, 2.951)

5.8

MPPL Solution after 3rd move -4.080 -2.980

1.4
% Error in MPPL (3 moves)

relative to Monte Carlo

2.1

(1.075, 1.126

5.3

I. 030

6.5
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EXAMPLE 17 :

LIMIT STATE FUNCTION : Z = X*Y**2*W

VARIABLE DIST. (MEAN/MED,STD/COV) :

X-WEI(10. ,2. ), Y-FRE(8. ,i. ),

AMVFO SOLUTION

(MED AND

W-EVD(6.,0.6), _v

EXACT SOLUTION

COV FOR LN DIST. ONLY)

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

363.3479 -5.232059 .839807E-07

926.2241 -3.541243 .199165E-03

1717.4930 -2.243117 .124446E-01

2668.5220 -1.048516 .147200E+00

5342.5160 1.070247 .857746E+00

7219.3570 1.857397 .968373E+00

9337.5020 2.425469 .992356E+00

11673.7000 2.858362 .997871E+00

-4.6020 .209444E-05

-3.3140 .459915E-03

-2.1410 .161370E-01

-.9800 .163543E÷00

1.1490 .874722E+00

1.9070 .971740E+00

2.4540 .992936E+00

2.8670 .997928E+00

12.0423

6.4170

4.5525

6.5346

7.3584

2.6706

1.1763

.3022
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Monte Carlo-Solution for Selected Points in Example 17

Z value 363.35 926.22

B, AMVFO -5.232 -3.541

B, Wu/FPI -4.602 -3.314

B, Monte Carlo (Harbitz) -4.613" -3.331

95% Confidence Intervals (-3.307, -3.3F3)

for Monte Carlo

% Error in AMVF0 relative

to Monte Carlo 13.4 6.3
,'.

MPPL Solution after 3rd move -4.700 i -3.37

i

% Error in MPPL (3 moves)

relative to Monte Carlo 1.9 I 1.2
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EXAMPLE 18 :

LIMIT STATE FUNCTION : Z = K*Y**2*W - 0.5*Y'W**2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR

X-WEI(10.,2.), Y-FRE(8.,I.), W-EVD(6.,0.6)

AMVFO SOLUTION EXACT SOLUTION

LN DIST. ONLY)

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

-5.190314 .I05168E-06 -4.4700

-3.515534 .219478E-03 -3.2690

-2.231815 .128136E-01 -2.1280

-1.048558 .147191E+00 -.9810

1.078238 .859536E+00 1.1470

1.854104 .968138E+00 1.9090

2.429086 .992432E+00 2.4540

2.854161 .997842E*00 2.8680

.391445E-05

.539702E-03

.166685E-01

.163296E+00

.874309E+00

.971869E+00

.992936E+00

.997935E+00

290.0668

838.3711

1616.3430

2549.8740

5167.1910

7011.5710

9087.6650

11399.7100

13.8780

7.0127

4.6516

6.4429

6.3773

2.9608

1.0257

.4849
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Monte Carlo_Solution for Selected Points in Example 18

Z value.

B, AMVFO

290.07

% Error in MPPL (3 moves}

relative to Monte Carlo

-5.190

-4.470

838.37

-3.515

B, Wu/FPI -3.269

B, Monte Carlo (Harbitz) -4.472* -3.280

95% Confidence Intervals (-3.256, -3.312)

for Monte Carlo .

% Error in AMVF0 relative
16.l 7.2

to Monte Carlo
•, , ,

MPPL Solution after 3rd move -4.540 -3.325

1.5 1.4

*Monte Carlo by mean value method with stratified sampling.
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During our studies, we have also worked the following examples. In all

cases the agreement between AMVFO and the exact solutions for at least one point
in the tail has been "excellent"

EXAMPLE 19 :

LIMIT STATE FUNCTION : Z = 2 X - Y + 2 W

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-WEI(10.,I.0), Y-FRE(10.,I.0), W-EVD(10.,I.)

EXAMPLE 20 :

LIMIT STATE FUNCTION : Z = X**I.2 + 0.05*Y**1.2

Vg_IABLE DIST. (MEAN/MED,STD/COV) : _.MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-N(10.,1.)

EXAMPLE 21 :

LIMIT STATE FUNCTION : Z = X*'l.5 + 0.05"Y**1.5

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-N(10.,1.)

EXAMPLE 22 :

LIMIT STATE FUNCTION : Z = X'*I.5 + 0.05"Y'*1.5

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)
d

X-WEI(10.,I.), Y-EVD(10.,I.)

EXAMPLE 23 :

LIMIT STATE FUNCTION : Z = 4"X*'2 + 3"Y**1.5 - 2"W**1.2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-WEI(10.,0.5), Y-EVD(20.,2.), W-LN(6.0,0.09)

EXAMPLE 24 :

LIMIT STATE FUNCTION : Z = 4"X*'2 + 3"Y**1.5 - 2"W**1.2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-LN(10.,0.05), Y-LN(20.,0.1), W-LN(6.0,0.09)

EXAMPLE 25 :

LIMIT STATE FUNCTION : Z = -2"X*'2 + 3"Y**1.5 + 4"W**1.2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-WEI(10.,0.5), Y-EVD(20.,2.), W-LN(6.0,0.09)



EXAMPLE 26 :

LIMIT STATE FUNCTION : Z = X Y

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,2.), Y-N(8. ,i.)

EXAMPLE 27 :

LIMIT STATE FUNCTION : Z = (X Y)**2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10. ,i.), Y-N(10. ,i.)

EXA-_L_-LE 2g :

LIMIT STATE FUNCTION : Z = (X Y)**3

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-N(10.,1.)

EXAMPLE 29 :

LIMIT STATE FUNCTION : Z = (X Y)**4

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-N(10.,1.)

EXAMPLE 30 :

LIMIT STATE FUNCTION : Z = (X Y)**5

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,I.), Y-N(10.,1.)
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APPENDIXC
Flow Chart for Analysis to Compute CDF's

of Correlated Response Variables

P. Wirsching

University of Arizona
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FLOW CHART FOR ANALYSIS TO COPfPUTE CDF'S OF CORRELATED

RESPONSE VARIABLES

Input:

i.

2.

Response functions; Z.; i = 1,2, . . K
l

Mean, std. dev. of each basic variable, Xi; i = 1,2, .

Note: ZI = Master

Z2, Z3 .... ZK - Slaves

STEP i (a)

Evaluate Z1 and Z2 at mean values of X1 and X 2 {

and at perturbed values of (_i + 0.i u i) of XI and X2_ I

STEP 2

Using results of Step i, estimate BZI' aZl and

UZ2' Cz2 by MVFOSM

Define the sample space for ZI.

z1_j = _Zl + j °Zl

j = -4, -3, . , 0, i, • . . 3, 4

Note: The CDF will be defined by 9 points

STEP 4

Using the results from Step i, expand

Zl and Z2 as linear functions about

Print _Zl' °Zl' UZ2' °Z2

STEP 3

Z1 - ao + al XI + a2 X2

I
Consider Zl; Use Hasofer-Lind (H-L_b_o compute:

i. BIj for each Zlj

2. Design point for each Zlj, denoted as _j

Note: This is the first estimate of the

CDF of Zl

Z2 - bo + bl XI + b2 X2

Print a's and b's

STEP 5

Print 81 - ZI;

Notes:

(a) Hereafter in this chart, N = K = 2 for simplicity.

(b) H-L is used in _PL3. Wu/FPI is used in MPPL9 in place of H-L.
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Compute Zij = Zi(_j)

i = l, 2 j = -4, . + 4

using the design point from Step 5

Note: This provides an improved value

of Z1 for the CDF of ZI.

.
Compute correlation coefficient for linear

form of El, Z2

2 2

aI bI + a 2 b2
°X I OX 2

2 2+ 2 22 2 + a22 2 )( bl b2 )
(aI OXI OX 2 °X 1 aX 2

Obtain estimate of 8 2

S2j = slj •

Note: This is the first estimate

of the CDF of Z2

Obtain perturbed solutions for ZI at all _

e.g., ZI(X I + .IOxI, X2)

STEP 6

Print _I - new ZIj

STEP 7

Print 0

STEP 8

Print B2j - Z2j

(from Step 6)

STEP 9

V

Expand ZI as a linear function

at each _j

STEP i0

Print coefficients of linear Zl

at each design point

For each Zl of Step i0, use H-L to compute,

i. 81j for each Zlj

2. Design point

Note: This provides an improved

for the CDF of ZI

STEP ii

Print 81j - Zlj

(from Step 6)
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z:j-
i = i,2 j = -4, . + 4

using the design point of Step Ii

Note: This gives an improved CDF for ZI

Compute correlation coefficient for each

Zij of Step i0 and Z2 (See Step 7)

If ABS(oj) is larger than p of Step 7,

improve 82 of Step 8 by 82j _ 81j " Pj

where 81j is from Step ii and Z 2 is from

Step 12.

Note: This gives the final CDF of

ZI and Z2 although several

more iterations are possible

STEP 12

Print BIj - ZIj (Step 12)

STEP 13

Print 9.
3

STEP 14

Blj - ZIj (Step 12)

Print B2j - Z2i_ (Step 8 or

Step 14 pairs)
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APPENDIX D

Details of Approximate Structural Models for PAAM

R.C. McClung
Southwest Research Institute
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APPROXIMATE ANALYSIS CASE 2A.S

COMPONENT"

MODEL:

ANALYSIS TYPE:

RESPONSE TYPES:

LOX post

Thick-walled cylinder

Static analysis of independent pressure and

temperature loadings

Stresses in hoop, radial, and axial directions

ANALYTICAL MODELS"

The LOX post is here modeled as a thick-walled cylinder subjected to different

internal and external pressures and temperatures.

Pressure Loading

The stresses in a thick-walled cylinder due to internal and external pressure

are available from the classical Lame' solution as

(rolr)Z(Po - P,). P,- pok 2

o,= k _- 1 k z- 1

(ro/r)2(Po - P,)÷ P.- p.k 2

k2-1 kZ-I
(_l m-

where

Fo

k=--

E,

and

P,.Po -- inner, outer pressure

r - radial position

r,.ro - inner, outer radii

u_.a e- radial stress, hoop stress

See Timoshenko and Goodier, _e____ep__r_of _ast_city , 3rd edition, 1970, pp. 69-71.

If the ends are restrained against axial motion, so that an axial stress

is induced by the attempted axial expansion or contraction, thac axial stress

is given by

2v(p,- pok 2)

_=" kZl

Therma% Loading

Assume a steady-state temperature distribution with internal temperature

T, and external temperature To. An appropriate solution which satisfies VZT =0

is

In(ro/r)

T-To+(T ,-To) In(k)

The solutions are then given by
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(to�r) z- I
Or "6

k 2 _ -i

(ro/r) z+ 1
011 = -6

kZ-I

where

6=

and

In(r Jr)

ln(_)

1 -ln(ro/r)
_6

In(k)

1 -21n(r./r)
+6

In(k)

aE(T,-To)

2(1-v)

E - Young's modulus

v - Poisson's ratio

a - coefficient of thermal expansion

These equations are based on the assumption of no end restraint. If the ends

are restrained to prevent axial motion, then the axial stress is given by

2(1-v-k2)o + 2vk 2 v-2ln(r,/r)
kZ-1 k-"z-'--l--I0°+6 In(k)

where

O=
a£ T

2(I-v)

In this expression, T should be interpreted as the difference between the actual

temperature at some location and the reference temperature at which there are

no thermally induced stresses or strains. Note that if the entire cylinder

experiences a uniform temperature rise, this equation gives the axial stress as
-aE T.

See Timoshenko and Goodier, pp. 448-451, d. Chakrabarty,_o__fPlasticity,

1987, pp. 334-337, and M. G. Derrington, "The Onset of Yield in a Thick Cylinder

Subjected to Uniform Internal or External Pressure and Steady Heat Flow," Int.

J. Mechanical Sci., Vol. 4, 1962, pp. 83-103.

INPUT VARIABLES:

Geometry

r,,r. inner and outer radius

Material

E - Young's modulus

v - Poisson's ratio

a - coefficient of thermal expansion

Loads

p_,p° - internal and external pressures

T,,T= - average wall temperatures at

inside and outside surfaces of cylinder

T,,/ reference temperature
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RESPONSE VARIABLES:

_m,__ maximum stress in shell, with corresponding

orientation and location

o.(r).or(r).o°(r) - hoop, radial, or axial stress

at user-defined location
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APPROXIMATE ANALYSIS CASE 2B.S

COMPONENT:

MODEL:

ANALYSIS TYPE:

RESPONSE TYPES:

LOX post

Hollow cylindrical beam with

elastic end restraint

Static analysis of axial loads due to pressure

and temperature, transverse loads due to fluid

drag, and buckling due to axial loads.

axial stresses, onset of elastic instability

ANALYTICAL MODELS:

The LOX post is modeled as a simple beam with a constant cross-section

corresponding to a hollow circle. One end is assumed to be rigidly fixed and

the other end is elastically restrained. This restraint is characterized by two

spring constants: k. is the resistance to axial motion in an equation of the

form F-k=u , and kb is the resistance to rotation in an equation of the form

M-k_% In both cases, a rigid end condition may be selected by choosing k_.

Axial stress due to differential pressure across face plate

Fo
oa

where

c= - axial stress

F= - axial load due to pressure differential

r,- inner radius

ro - outer radius

Axial temperature gradient

Assuming a linear distribution of temperature from the inlet end to the

outlet end,

aL(To_,- To)+ '_(T,.- To_,)
F T "

la

where

FT - induced axial load (positive value denotes compression)

To.,,T,. - temperatures at outlet end and inlet end

To - reference temperature at which no thermally induced

stresses or strains are present

L - length of beam

a - coefficient of thermal expansion

E - Young's modulus

A - cross-sectional area of beam - _(r_-r_)
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n_K__q__YR_Kg_Load due to Flui_d rD_Kag

The maximum bending moment in the beam when subjected to a uniformly

distributed transverse load occurs at the fixed end and is given by the expression

whe re

I £I

4 koL

I=
4

and

w- magnitude of the distributed load

M - bending moment

The maximum bending moment in the beam when subjected to a transverse point
load P at a distance x from the fixed end occurs at one of the two ends, depending

on the value of x/L. At the fixed end, the moment is

Mmpx 1--[ 1- -

and at the elastically restrained end, the moment is

u-
The axial stress associated wlth these bending moments is given by the

well-known form

Mr

Oa" T

Onset of _lastic Instability

Estimates of the critical load for buckling are based on more general

expressions developed by Timoshenko and Gere, Theory_ of Elastic Stability, 2nd

edition, 1961, pp. 59ff. Those expressions result in transcendental equations

for the critical load. The equations given here are empirical fits to the exact

solution. The exact solution and empirical expression are compared graphically

in Fig. 2B.S.I. The possible effects of simultaneous transverse loading are not

considered.

F,o'---t"2*2 sec -I .296-_ 1

where

nZEl

F.f = L---F-

and

For - critical axial buckling load
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INPUT VARIABLES:

Geometry
£ - length of beam

r,.ro inner and outer radius

ko,k, - axial and bending stiffness

Material

F - Young's modulus

a - coefficient of thermal expansion

Loads

To - reference temperature at which no

thermally induced stresses or strains are present

T_t,T,. - average wall temperatures at
outlet end and inlet end

p - pressure differential across face place

w - distributed transverse load due to fluid drag

P(x) - transverse point load due to fluid drag

acting at a distance x from the fixed end

RESPONSE VARIABLES:

Oo - axial stress (maximum value, value at

user-defined location)

F/F_r ratio of axial load to critical buckling load
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3.9

3.8

EFFECT OF END STIFFNESS ON BUCKLING

Exact Solution and Empirical Formula

3.7 m

3.6 -

3.5 -

3.4 -

3.3 -

3.2 -

3.I -

3 -

2.9 -

2.8 -

2.7 -

2.6 -

2.5 -

2.4 -

2.3 -

2.2 -

2.1
2 l I I l !

20 40

Normalized End Stiffness (kL/EI)

6O

Figure 2B.S.I. Comparison of Euct Solution and Xmpirical Formula

for X££ect of End Stiffness on Critical Buckling Load
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COMPONENT :

MODEL:

ANALYSIS TYPE:

RESPONSE TYPES:

APPROXIMATE ANALYSIS CASE 2.V

LOX post

Hollow cylindrical beam with
elastic end restraint

Vibration

Natural frequencies and mode shapes

Transverse displacement and bending stress

response to harmonic and random excitation

ANALYTICAL MODEL:

Free Vibration

The natural frequencies are given by the expression

where

.(r:-r._)
I=

4

A-n(r:-r,_)

/- frequency (hertz)

i - mode number

k- frequency factor

Z- length of beam

F - Young's modulus

p- mass density

/4- cross-sectlonal area of beam

r,.r,- inner, outer radius

An equation of this type is given In R. D. Blevins, Formulas for N@tural

FreQuency and Mode ShaDe, New York: Van Nostrand Reinhold, 1979.

Values for k, are given approximately by the following expressions, depending

on the boundary conditions at the two ends of the beam:

fixed-pinned; k_"_- in + ,/4

fixed-fixed: k_/) - _n÷ r_/2

For the lowest fundamental modes, it is necessary to use more exact values

for the frequency factors. These are as follows:

Mode Number

i

2

3

4

5

6

7

8

9

Fixed-Fixed

4.730040744863

7.853204624096

10 99560783800

14 13716549126

17 27875965740

20 42035224563

23 56194490204

26 70353755551

29 84513020910

Fixed-Pinned

3.92660231

7.06858275

10.21017612

13.35176878

16.49336143
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More precise values for K, at the higher mode numbers were taken from T.-C. Chang

and R. R. Craig, Jr., "Normal Modes of Uniform Beams," J. FnEineering Mechanics

Div., ASCE, Vol. 95, August 1969, pp. 1027-I031.

Elastic end restraint is accommodated. The nondlmensional quantity k_L/El

is evaluated to determine the appropriate end condition. Here k 0 is a rotational

spring stiffness with units of [force*length] satisfying the relationship ,%4-k00.

Note that if koLl£! < .01, the variable end condition is approximately pinned,

while if kof/£! > i000, the end condition is effectively fixed. A first

approximation to the LOX post geometry is to assume that the inlet end is fixed

and the outlet end has some finite elastic stiffness. A smooth, continuous

empirical relationship which estimates the frequency factor with acceptable

accuracy for all koL/£1 is given by

K, - ix + C,_,

where

C, - k_ ")- i.

Note that C, reduces to _/4 for i > 5. The _ term is equal to

This empirical relationship is compared directly with tabulated results from an

exact analysis (R. C. Hibbeler, "Free Vibration of a Beam Supported by Unsymmetrical

Spring-Hinges," J. Appl_ed MechanlgB, Trans. ASME, Vol. 42, 1975, pp. 501-502)

in Fig. 2.V.I. Note that _, ranges between 1 (pinned) and approximately 2 (fixed).

The empirical relationship is less exact for truly intermediate stlffnesses

(e.g., kDL/£I - I0), where no single equation can easily correlate the frequency

factors for all mode numbers. The function is smooth and gives the proper sense

of the analytical results over the full range of k6Z/£1 values and is quite

accurate nearer the limiting conditions, which are likely more relevant to the

actual design. Note also that at higher modes, the end conditions are less and

less significant. For the fifth mode, flxed-fixed and plnned-plnned frequencies

differ by only 10%.

Mode shapes are given approximately by the expression

#, - cosh (B,)- cos(B,) - o,{ sinh(B,)- sin (B,)}

where

k,x

B,-T

cosh(k,) - cos(k,)

O, " sinh(K,)- sin(k,)

Note that x-O corresponds to the fixed end.

An axial 10ad may have some effect on the natural frequency. An approximate

formula for this effect is

jr I,.o- f, I,.o I + p,,X.,_
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where For is the critical buckling load (see Approximate Analysis Case 2B.S).

Note that compressive loads (F negative) decrease the natural frequency and

tensile loadsincrease the natural frequency. The changes in mode shape resulting

from axial load are very small and may be neglected.

If it is desirable to include a slight taper in the beam, this can be

accommodated approximately by making appropriate adjustments in the moment of

inertia and cross-sectional area. Effective values for these two quantities are

given by making the substitution

reff "

where a and b are the appropriate radial dimensions at the two ends of the beam.

This adjustment does not account for changes in the mode shape caused by the

taper, but gives a first-order correction for the natural frequencies. For

further information, see R. P. Goel, "Transverse Vibrations of Tapered Beams,"

J. Sound and Vibration, Vol. 47, 1976, pp. 1-7, and H. D. Conway and J. F. Dubil,

"Vibration Frequencies of Truncated-Cone and Wedge Beams," J. Applied _echanics,

Trans. ASME, Vol. 32, 1965, pp. 932-934.

Forced Vibration

A simple particular solution for the forced vibration problem is based on

the principle of receptances and considers only those response terms having the

- same frequency as the excitation. For a harmonic transverse point loading at
the point x-x I of the form

/(x,.t)- Poe"

the response at the point x- x z is given by

y(xa.t)= at2Po e'_'

where

a,_- t *j(x,),,(x_)
I-,APL(w_-_ 2)

is the receptance. The form of _j(x) is given above in the discussion of mode

shapes for free vibration. The series form of the receptance is usually dominated

by the terms corresponding to the two nearest natural frequencies.

The maximum outer fiber bending stresses at x- x z due to a harmonic point

load at x- x, are given by the form

o(x,.t)= V,2P0e'"

where

¥,z" Z r'E*'(x')*'"(Xz)

and

@,"(x) = {cosh(_,) ÷ cos([_,)- o,[sinh(_,) ÷ s|n(_,)]}

If the point load P, is replaced by a uniformly distributed load LJper unit

length, then similar equations hold true. P. is replaced by _/, and #,(xj) in the

expressions for ai_ and y,_ is replaced by the term
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(L)_, {stnh(X,)- sin(A,)- o,[cosh(A,)+ cos(_,)]+ 20,)

More general equations can be written to include the effects of hysteretic

or structural damping. The original differential equation of motion

m_(t)+mw'_(t)- F(t)

is modified in the stiffness term to the form

m_Ct) + moo'( 1 ÷ iq,)_Ct) - t:(t)

where n, is the structural damping factor corresponding to the ith mode. Then

we can write for the receptance the expression

i-I ApL I
QI2"

where

X i -
UO_ -- (A) Z

+ qlwl

YI"
+ rlluo i

Note that the complex conjugate of the receptance is given by

a;z" Z CJ(xi)¢J(XZ)CXl+iYj)
I-J ApL

Random Vibration

The spectral density 3,,(ov)of the motion of xz is related to the spectral

density Stz(uo) of the load P(t) at point x2 by the relationship

S,L(_)-Io,21 zS,2(°°)

If multiple point loads are involved, the PSD of the response at a point x, is

given by

r-I Ir-l

where 5,,,.(ov) is the cross spectral density of the loads P, and P,. When r-s.

the term denotes the simple spectral density of the appropriate load P.

Similar expressions can be written for the spectral density of the response

stresses by appropriate substitution of y for a.

Mean square values for the response variables are obtained by numerically

integrating the spectral density of the desired response variable over a specified

range of excitation frequencies. The selection of specific frequency bands for

the integration scheme must consider the locations of the natural frequencies.

INPUT VARIABLES:

Geometry

L - length of beam

r,,ro - inner and outer radius of beam
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Material

E - Young's modulus

@ - Nass density

k0 - rotational spring stiffness at the elastically restrained
end of the beam

Loads

P_(x.) - magnitude of nth harmonic point load, located at position x.

h/ - magnitude of harmonic uniform distributed load

oo- circular frequency of harmonic exciting force

q - structural damping factor

power spectral density and cross-spectral density

of multiple random excitations

RESPONSE VARIABLES:

/,- natural frequencies

y,(x)- normalized mode shapes for free vibration

y(x) - amplitude of displacement response

to harmonic forced vibration

a(x) - amplitude of stress response

to harmonic forced vibration

power spectral density of transverse displacements and

bending stresses at various positions along the beam

mean square values of the displacements and stresses
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2.1

EFFECT OF END STIFFNESS ON FREQUENCY

Exact Solutions and Empirical Formula
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o.

EFFECT OF END STIFFNESS ON FREQUENCY

Exact Solutions and Empirical Formula
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Figure 2.V.1. Comparison of Exact Solutions and Empirical Formula
for Effect of End Stiffness on Natural Frequencies
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APPROXIMATE ANALYSIS CASE 3.S

COMPONENT"

MODEL:

ANALYSIS TYPE:

RESPONSE TYPES:

Transfer duct

Circular cylindrical shell

Static analysis of independent pressure and

temperature loadings, including buckling

Stresses and displacements

Onset of elastic instability

ANALYTICAL MODELS:

The transfer duct is typically conical in shape with a circular or elliptic

cross-section. The semi-vertex angle of the cone is typically small, however,

and for that geometry it is sufficiently accurate to approximate the shape as

an equivalent cylinder. This is a cylinder with radius equal to the average

radius of the cone and length equal to the meridlonal length of the cone. As

a further simplification appropriate to an approximate method, cross-sections

are assumed to be circular.

Static Stresses

Static stresses arise from both the external pressure and the thermal

gradients. Here we will calculate stresses at two locations: the midsection of

the cylinder, equidistant between the two ends and assumed to be free of end

effects; and at the ends, where we assume the cylinder to be rigidly clamped.

We must be careful to maintain a consistent sign convention, such that compressive

stresses are negative and tensile stresses positive.

External pressure causes membrane stresses in the shell. These can be

estimated from common thln-shell theory as

pu
a h " -_-

where oh indicates the hoop stress, p the external pressure (greater than the

internal pressure), u the mean radius of the cylinder, and h the thickness of

the cylinder wall. Note that a positive external pressure leads to a negative

(compressive) hoop stress. If the cylinder is constrained against axial expansion

or contraction, there will be an induced axial stress equal to

Ga m V(J_

These expressions are all applicable away from the ends. Near the ends

there is assumed to be total constraint, which induces certain bending stresses.

An axial stress at the ends can be calculated as

where

_4m

3(I -v')

amh 2
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This is an outer fiber stress which will have different sign on the inner and

outer surfaces of the cylinder wall. For a positive external pressure, the axial

stress will be _ompressive on the outside and tensile on the inside. A corresponding

hoop stress will be generated according to o_ = VOo. These results are developed

from the work of Timoshenko and Woinowsky-Krieger, _ of Plates and Shell_______s,

2nd edition, 1959, pp. 466-501.

There are two possible sources of thermal stresses to be considered here.

The first is that the entire cylinder experiences an increase in average temperature

from the stress-free reference temperature. The second is that there is a thermal

gradient through the thickness of the cylinder wall.

We consider first the thermally induced stresses at some distance from the

ends. A uniformly distributed change in temperature causes no thermal stresses

in the absence of restraint. If the ends are restrained against axial motion,

there will be an induced axial stress equal to

o°"-£aAT=o_

where ATo_ o is the average temperature change in the entire shell, £ is Young's

modulus, and a is the coefficient of thermal expansion. The negative sign

indicates that a positive temperature change causes a compressive stress.

The radial displacement due to a uniform thermal expansion is given by

A unlformthermal gradlentthroughthe thickness characterized by ATA (where

the temperature on the inside is higher) results in stresses

£aAT_

°h'°°'*2(l-v)

In this case, the stresses are tensile on the outer surface and compressive on

the inner surface.

Stresses near the ends are more complex and, of course, depend more directly

on the end conditions. Here we will consider the limiting condition of fixed

end conditions. A uniform thermal expansion of the entire cylinder results in

an additional axial stress at the end of

41 -v"

(where the minus signdenotes compression on the outer surface) and an additional

hoop stress at the end of

Oh " -£aAT.,_

The radial displacement is zero at the ends under these conditions, of course,

but it increases to 1.067 of its midsection value at the location _x- 2.4 before

dropping back to the steady level.

See again Timoshenko and Wolnowsky-Krleger, pp. 497-501, and also H. D. Tabakman

and Y. J. Lin, "Quick Way to Calculate Thermal Stresses in Cylindrical Shells,"

Machine ___, September 21, 1978, pp. 138-143.
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Buckling

Buckling san be caused by the combined action of a uniform external pressure

and the restrained thermal expansion of the shell, which induces a compressive

axial stress. The recommended practice for the calculation of critical buckling

loads due to these conditions is given by the linear rule

R_÷ R v " ÷ -1

where R_ and Rp are the ratios of allowable to critical load for each load type

considered independently.

The critical compressive buckling stress is given by the form

y,E /h_
"'" =

where ¥, is an empirical factor used to correct the disparity between theory and

experiment. A suggested expression for 7= is

yl = 1-0.901(1-e")

whe re

The critical external pressure is calculated as

0.855 £_

Per , :

Here _ is conservatively estimated as 0.75.

These equations are based on the recommendations of NASA SP-8007, Bucklin_

of Thin-walled Circular Cylinders, August 1968 (rev.), one of a series of NASA

space vehicle design criteria monographs.

The end conditions can have a complex influence on the critical buckling

load, depending on the nature of the end restraint. One factor is the restraint

against rotation of the ends, analogous to the influence of fixed or pinned ends

on the behavior of a slender column. This effect is considerably less significant

for cylindrical shells, since the buckled shape usually corresponds to larger

numbers of axial and circumferential nodes. The equations given above are for

simply supported ends, which is a slightly conservative estimate. Another, more

complicated factor, arises due to constraint against radial displacement at the

ends. When the shell heats up and expands, there will be not only an axial

expansion but also a circumferential and radial expansion. Far from the ends,

this expansion will be unrestrained, but at the ends there may be some restraint

which prevents or limits the displacements. This will cause some bowing of the

cylinder wall, and this initial prebuckling deformation will further reduce the

critical axial load. This is a complex nonlinear effect, and its analysis is

further complicated by uncertainties regarding the exact nature of the end

conditions in the actual component. As a first approximation for the current

linear PAAM code, we will neglect all end effects.
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INPUT VARIABLES:

Geometry

L - equivalent length of cylinder

a - equivalent mean radius of cylinder

h - thickness of cylinder wall

Material

E - Young's modulus

v - Poisson's ratio

a - coefficient of thermal expansion

Loads

p - external pressure

To. To - temperatures at inner and outer surface of wall

T,, I reference temperature at which no

thermally-induced stresses or strains are present

RESPONSE VARIABLES:

0,.0. - axial and hoop stresses at the ends and at the mid-section of

the shell

critical buckling ratio
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APPROXIMATE ANALYSIS CASE 3.V

COMPONENT:

MODEL:

ANALYSIS TYPE:

RESPONSE TYPES:

Transfer duct

Circular cylindrical shell

Vibration

Natural frequencies and mode shapes

Response to harmonic and random excitation

ANALYTICAL MODELS"

Free Vibration

Typical transfer ducts are generally conical in shape with circular or

elliptical cross-sections. These cones are here analyzed as "equivalent cyl-

inders," cylinders having their radius equal to the average radius of the cone

and their length equal to the meridional length of the cone. For small semivertex

angles, this approximation is quite good, as confirmed by R. F. Hartung and W.

A. Loden, "Axisymmetric Vibration of Conical Shells," Journal of Spacecraft an___dd

Rockets, Vol. 7, No. I0, October 1970, pp. I153-1159, and also by G. Herrmann

and I. Mirsky, "On Vibration of Conical Shells," Journal oftheAerosoace _clences,

Vol. 25, 1958, pp. 451-458. Other nondimensional parameters, including the ratio

of length to radius, were considered when assessing the adequacy of the

approximation.

Another issue to be resolved is the matter of boundary condltlons. Several

different end conditions are possible, including restraint of radial displacement,

axial displacement, and rotation at the ends. Many combinations are possible.

K. Forsberg ("Influence of Boundary Conditions on the Modal Characteristics of

Thin Cylindrical Shells," AIAA Journal, Vol. 2, No. 12, December 1964, pp.

2150-2157) has suggested that the most significant influence on natural frequencies

is due to the condition placed on the axial displacement. These effects are

most pronounced for the lowest natural frequencies. As the number of axial

half-waves increases, the model characterlstics for all boundary conditions

converge to similar values. The present analysis will assume the ends to be

clamped with full restraint against axial motion, the conditions analyzed by

Arnold and Warburton in the reference given above. Forsberg's results suggest

that no significant errors will be introduced by this assumption for the geometries

typical of the transfer duct.

Internal pressure can have a significant effect on the natural frequency

response of the cylindrical shell, as shown by Y. C. Fung, E. E. Sechler, and

A. Kaplan, "On the Vibration of Thin Cylindrical Shells Under Internal Pressure,"

Journal of the Aeronautical Sciences, Vol. 24, 1957, pp. 650-651. This effect

seems to be pronounced only for larger number of circumferential waves and thinner

shells, however, and so it is neglected in the present analysis.

General Formulation

R. N. Arnold and G. B. Warburton ('The Flexural VibratlonsofThlnCylinders,"

Proc. lnst. Mech._E/_$___London, Vol. 167, Set. A, 1953, pp. 62-74) have presented

an approximate solution technique for the free vibration of circular cylinders

which gives results for numbers of circumferential waves greater than or equal
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to two and any number of axial waves greater than or equal to one. The determination

of natural frequencies by their method depends on the solution of the cubic
equation

,'_-RzA 2÷R,_-R o-0

where

1 / £g_

/" e-7_ /p( 1 - ,,_)

and

- frequency factor

f - frequency

u - mean radius of cylinder

E - Young's modulus

g - gravitational constant

p - density
v - Poiss_n's ratio

The coefficients Ro,R_,R z are given by lengthy expressions involving the

numbers of axial and circumferential waves, the radlus, length, and wall thickness

of the cylinder, and other variables related to an axial wavelength factor. Full

equations are given in Appendix I of the original paper. Solution of the cubic

equation above results in three positive real roots, but only the lowest value

is of significance to the problem at hand.

Solution of this series of equations for different wave numbers permits

identification of the mode shape corresponding to the lowest natural frequency,

which can change dramatically with cylinder geometry.

The displacements corresponding to these natural frequencies are given by

the following equations:

for even numbers of axial nodes and

for odd numbers of axial nodes where u, v, and w are the displacements in the

axial, circumferential, and radial directions, _ is the angular coordinate, and

n is the number of circumferential waves. The axial wavelength factor _ is given

by

Q
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Here m is the number of axial half-waves (m*l is the number of axial nodes)

and L is the length of the cylinder. The coefficient k is equal to

k r.t_
sinh_j

The constants ,_, 8, and C can be determined by solving three simultaneous equations

given in Appendix I of Arnold and Warburton. In general, the radial displacement

will be the largest.

Axisymmetric Vibration

Simpler expressions are possible for axisymmetric vibratory modes, where

displacements are only radial and n-O. Here we take advantage of the similarity

between the governing differential equation for the vibration of a circular

cylinder and the transverse vibration of a beam on an elastic foundation. The

equations are identical if £! for the beam is replaced by the flexural rigidity

D of the cylinder, the foundation stiffness E ! is replaced by the quantity Eh/a 2,

where h is the cylinder wall thickness, and the mass per unit length pA of the

beam is replaced by the mass per unit area ph of the cylinder. Here D is
calculated as

D
12(I -v z)

A further simplification is possible because the natural frequencies of a

beam on an elastic foundation, /, are related to the natural frequencies of the

corresponding beam without the elastic foundation, I,o by the relationship

1," ],_*4pAaz

See J. W. Stafford, "Natural Frequencies of Beams and Plates on an Elastic

Foundation with a Constant Modulus," J. of _he Franklin Institute, Vol. 284,

1967, pp. 262-264. The mode shapes of the beam are not affected by the addition

of the foundation. Therefore, we may take advantage of expressions developed

earlier for the transverse vibration of the LOX post in order to describe the

natural frequencies and mode shapes of the circular cylinder.

Carrying out the necessary calculations and simplifications, we have for

the circular cylinder

], - 4nz/4ph ÷ 4_2az----_-_

where A, is determined from the information and equations presented in Approximate

Analysis Case 2.V, vibration of the LOX post. The model requires that one end

of the cylinder be rigidly clamped, but allows the cylinder walls at the other

end to be elastically restrained against rotation. In order to consider elastic

end restraint in the cylinder based on the equations developed for the beam, two

modifications are required. The first is the substitution of the flexural

rigidity D for the term EI when calculatlng _,. The second is a change in the

units of kb to [force*length/length], since the moment in the expression M-k0e

is a meridlonal bending moment with unlts [force*length/length]. The final form

of _,, then, is
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The radial displacement _ is given in normalized form by the expression

w," cosh(_,) + cos(_,)-o,{sznh(_,)+ sin(r,)}

where

K,:c

t

cosh(_,)- cos(X,)

°'" sinh(A,)- sin(k,)

Note that x-O corresponds to the fixed end.

Harmonic Forced Vibrat%on

The governing differential equation for the general, non-axisymmetric

vibration of the cylinder is sufficiently complex to prevent any simple solutions

for harmonic forced vibration, and therefore thls problem lles beyond the scope

of an approximate method. Some solutions are possible, however, for axisymmetric

vibration (n-O) based on the analogy with a beam on an elastic foundation.

For an axisymmetric, harmonic line loading Po per unit length at the axial

position x-x, of the form

l(x,.t)- Po_'_'

the axisymmetric displacement response at the axial position x- x 2 Is given by

w(x_.l)= aj2Poe '_t

where

QI2 m

The outer fiber bending stresses (in the axial direction) are given by
o(x_.t)= y,zPoe'"

where

and

"6Dwt(xl)w#"(xz)Yl2"

,-_ t_3pL(_-_ ')

w,"(x) = {cosh(_,) ÷ cos(p,)- o,[sinh(_,) + sin(_,)])

Similar expressions are possible for unlformpressure loadlngs and systems

with structural damping, by analogy to the expressions given In Approximate

Analysis Case 2.V, vibration analysis of the L0X post.

aF_!_p__Vibrat_on

The response of the cylinder to random axisymmetrtc excltation is based on

the expressions developed previously for harmonic excitation, following the form

of equations derived for the LOX post (q.v.).
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INPUT VARIABLES:

Geometry_

L - length of shell

a - mean radius of shell

h - thickness of shell wall

Material

F Young's modulus

v Poisson's ratio

p - density

k_ - rotational spring stiffness at the elastically restrained

end of the cylinder

RESPONSE VARIABLES:

fm,. - minimum natural frequency and corresponding wave numbers

/(m.n) - natural frequencies corresponding to various combinations

of the wave numbers

w(x) - amplitude of radial displacement response to axisymmetric

harmonic excitation

o(x)- amplitude of outer fiber bending stress response to

axisymmetric harmonic excitation

power spectral density of radial displacements and bending stresses

at various positions along the cylinder for axisymmetric

random excitation

mean square values of the displacements and stresses
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Validation of Lox Post Thick Cylinder Model

Validation of the PAAM code

A validation problem of the Lox Post thick cylinder model

was performed using realistic input data obtained from the first

annual PSAM report, the Rocketdyne division and best engineering

estimates. An advanced first order and Monte Carlo analysis of

the closed form solution were performed. In addition, a Nessus

finite element model of a thick cylinder was performed to check

against the closed form model.

The variable inputs for the Lox Post thick cylinder model are

listed in Table i.

Table I. Definition of random/deterministic variables

Variables Distribution Mean COY

Inner Radius (Ri) truncated Normal 0.94 1.06%

( 0.03)
truncated Normal 0.94Outer Radius (Ro)

Young's Modulus(E)
Poisson's Ratio

Thermal coefficient

Internal Pressure(Pi)

External Pressure(Po)

Internal Temperature(Ti)

External Temperature(To)

Reference Temperature(Tref) N/A

4.55%

(-0.002, +0.01)
Normal 3.4032E+07 2%

Normal .359375 2%

Normal 5.65E-6 5%

Lognormal 3077 4%

Lognormal 3232 4%

Lognormal 194 R 1.55%

(3 R)

Lognormal 1444 R 1.55%

(15 R)
530 R 0%

Notes: All mean value data was obtained from the ist annual PSAM

report and Rocketdyne. The truncated normal limits for Ri and Ro

along with the mean temperatures and COY of Ti and To were pro-

vided by Rocketdyne. Other statistical data such as distribution

types and COV for the other random variables were determined from

default values provided by Dr. Paul Wirsching and are not problem

specific, see Table 2.

The input data for PAAM is identical to FPI with the exception

that additional data is sometimes needed. This need is accommo-

dated by adding the necessary response data after the model data.

The keyword *RESPONSE indicates response data is being provided.

In PAAM, the first data is the response function desired (i.e.

Lox post thick cylinder, Lox post tapered beam, Turbine blade,

etc.). In the Lox Post thick cylinder example the response func-

tion is "2AS". The second data is a set of five integers. The

third data is a set of five reals. This information can be used

anyway desired by the user written subroutines. Additional

information can be entered in any format as long as the user
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written routine reads the data properly. For the Lox Post thick

cylinder example the first integer indicates the response type

(i.e. hoop _tress, radial stress or axial stress); the second

integer indicates whether end constraints are imposed ( ii - yes,

12 - no). The first real indicates the radial position of the
desired response; between 0.0 = RI to 1.0 = RO.

The input file for an Advanced Mean Value solution of the Lox

Post thick cylinder model is listed. The desired response is the

hoop stress at the inner radius without end constraints.

*FPI

THICK CYLINDER MODEL (2AS) - USER DEFINED HOOP STRESS
*RVNUM i0

*GFUNCTION 6

* DATAS ETNM 0

*METHOD 1

* PRINTOPT 0

*ANALTYP 0

*END

*DEFRANVR

RI

0.9400000E+00 0.1000000E-01 O.IO00000E+02

0.91 0.97

RO

O.II00000E+01 0.3300000E-02 O.1000000E+02

1.098 i. II

E

0.3403200E+08 0.6806400E+06 0.2000000E+01

XNU

0. 359375 O. 00719 0. 2000000E+OI
ALPH

0.5650000E-05 0.2830000E-06 0.2000000E+01

PI

0.3077000E+04 0.1230000E+03 0.4000000E+01

PO

0.3232000E+04 0.1292800E+03 0.4000000E+01

TI

0.1940000E+03 0.3000000E+01 0.4000000E+01

TO

0.1444000E+04 0.1500000E+02 0.4000000E+01

TREF

0.5300000E+03 0.0000000E+O0 0.2000000E+OI

*END

*RESPONSE

C LOX POST THICK CYLINDER MODEL

2AS

1 II 0 0 0

0.00000 0.00000 0.00000 0.00000

*END
0.00000
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The results of the Lox post FPI and Monte Carlo analyses for hoop
stress at the inner and outer radii are shown in figures i. and
2. The agreement between FPI and Monte Carlo is excellent for

the closed form model. However, the hoop stress values clearly

indicate that yielding will take place and a nonlinear model

should be developed.

Figure 3. shows the sensitivity at +3 standard deviations of

the random variables for the hoop stress at Ri. The coefficient

of thermal expansion clearly dominates. The internal and exter-

nal radii are insignificant do to their tight tolerances. It

should be pointed out that the COV used for the thermal

coefficient (ALPHA), elastic modulus (E), Poisson's ratio (XNU),

internal and external pressure (Pi and Po) were chosen from

default values given by Dr. Paul Wirsching. This statistical

data is suggestions to be used when problem specific data is not

available. Use of improved statistical data may significantly

alter the results.

Table 2.

ables:

Default distributions and COV for NESSUS random vari-

VARIABLE DISTRIBUTION COV

E Normal .02

n Normal .02

G Normal .02

r Normal .02

a Normal .05

Yield stress Wiebull .07

Coords Normal .005

Thickness Normal .005

Temp Lognormal .05

Press Lognormal .04

Forces Lognormal .02

x-sect area N .007

Inertia L .02

Torsional constant L .01

springs L .02

blade angle - x,y,z N stdev = 0.i °

Material Orientation N

Other Lognormal
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APPENDIX F

Validation Cases

Y.-T. Wu
O.H. Burnside

Southwest Research Institute
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TITLE:

PROBLEM:

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 4

Rotating Beam (Timoshenko beam elements)

Determine the probabilistic distributions of the

first bending natural frequency and the tip displacement

of a rotating beam

Centrifugal loading and stress stiffening effects

First bending frequency and tip displacement

NESSUS element type 98 - Timoshenko beam element
Number of elements = 10

Number of nodes : Ii (6 degrees-of-freedom per node)

Boundary condition: cantilevered

Figure V4-1. Sketch and FEM model

I

I

I

R_

L

i

i

I !
V"

| i r i

t I

t

I
• I
J

ANALYTICAL SOLUTION:

Assumed first bending mode shape: (x**4 -4*L,x**8 + 6*L**2*x**2)/L**4

Frequency : SQRT { 1.0384 * E * t**2 / (r,L**4) + (I.173+6.6/L) * f**2

Tip displacement : r * (f**2) * (1,,3) * (i + Ri/L) / (3.*E)

where E : modulus

r = mass density

w : width

t = thickness

L = length

f : rotating frequency = 400 rad/sec
Ri: inside radius : 4.237 in.
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VALIDATION CASE 4 (Continued)

DEFINITION OF-RANDOM/DETERMINISTIC VARIABLES

Young's Modulus

Length
Thickness

Width

Density

Rotating Frequency

Radius Ri*

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal
Fixed

Fixed

*Note: see Figure V4-1

29E+06 psi
3.844 in

(1.0416 in

1.424 in

9E-4 ib-sec2/in4

400 rad/sec

4.237

10%
5%

5%

5%

5%

NESSUS CONVERGENCE/PERTURBATION SETTINGS (NESSUS 2.7)

i. Modal extraction:

*MODAL 1 0 1

2. Parameter Data:

*PERT 5 5 O(Eigenvalue re-solution)

3. Convergence criteria:
Increment O:

*ITER 0 5

20 I.E-04

Increment I:

*ITER 0 5

20

4. Perturbation Settings:
+0.001 standard deviation for length.

+0.I standard deviations for the remaining random variables.

SOLUTION COMPARISON:

1. Deterministic solutions using the mean values of random variables:

Table V4-1 Comparisons of the deterministic solutions

Frequency

Tip displacement

Theory NESSUS NESSUS/Theory

853.0 855.6 1.003

2.4945E-4 2.4829E-4 0.99534
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VALIDATION CASE 4 (Continued)

2. Probabilistic solutions for the frequency and the displacement
at selected probabilistic levels:

Simulation: Monte Carlo (sample size = 500,000)

NESSUS: Mean-Value-First-Order (MVFO) solution
Advanced MVFO solution

(See Figures V4-2 and V4-3)

REMARKS: Date: 2/26/88 NESSUS 2.7 PFEM

I. The perturbation range for the length was selected to be very small

(0.001 std.) to avoid convergence instability.

2. The "adjusted" exact curves in Figures V4-2 and V4-3 are defined using
the ratios of the NESSUS mean solutions to the theoretical mean

solutions. (see Table V4-1)
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VALIDATION CASE 4 (Continued)

Figure V4-2 First Bending Frequency

.J

0

0
¢

w
_>

D

o MVFO

Figure V4-3 Tip Displacement

99'99 I B A

S4

Order

, , , l , , i r , , , ,

2.4 2.8 3.2 3.6 4 4.4 4.8
0_-_, 1E--4)

OISPL_CEMENT (in.)
A _ Uo,-,_ c_o(5ooooo) o uwo

,, ,,_,. uwo _ -- ,Ik:ljulte4 IE,_QI_ t4
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TITLE:

PROBLEM :

TYPE:

RESPONSES:

FEM MODEL:

VALIDATION CASE 8

_tatic Analysis of Spherical Shell

A spherical shell is subjected to uniform internal

pressure loads. Determine the orc, babiiistIc distribution __f

the maximum stress.

Statlc, fully correlated pr__ssure loadinQ

Stress

NESSUS element type 75 Four-node assumed strain axisymmetrlc
Number of elements = 200

Number of nodes = 211 (6 degrees-of-freedom per node)

(Nodes 181 to 211 constitute _ co_,.) llapsed. 3-node elements)

Boundary condition : fixed at ba_e (node i to node 21)

Fiaure V8 - I Sketch and FEM Model

2.11

I/_ _ODEL

\ /

% /
\ /
\ /R
\ /
\ /
\ /
%

N/

I

ANALYTICAL MODEL:

Analytical Solution: Smax = 1.2 * (R $ P)/h

where R = radius

P = internal pressure

h = thickness

Reference: Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells

2nd ed., p544
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VALIDATION CASE 8 (ContlnL_._.cI,

DEFINITION OF_ RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables =

'Jariables Distributlon Mean

Pressure P LQgnormal 284 psi

Thicknes_ h Lognormal 2.36 in

Coef. of Vmrlat:

10%

5%

NESSUS CONVERGENCE/PERTURBATION SETTINGS

I. Convergence Limit:
Max. number of iteratlons allowed:

Max. allowable tel. error in the residuals:

2. Perturbation Range:

+0.I standard deviations for both random variables.

SOLUTION COMPARISON:

i. Deterministic solution using mean values of random variables:

Stress

Theory 8130.1 psi

NESSUS 7883.5 psi

Ratio 1.03

2. Probabilistic solutions at selected probabilistic levels:

Theory: Exact (Stress is also a lognormal variable)

NESSUS: Mean Value First Order (MVFO) solution

Advanced Mean Value First Order solution (AMVFO)

First iteration solution

(See Figure V8-2)

REMARKS:

i. The perturbation convergence limit must be small enough to insure

at least one iteration will be performed in NESSUS perturbation.

2. For the probabilistic solution (see Figure V8-2), an adjusted "e×a

solution was defined by dividing the theoretical solution by a factor

of 1.028. This factor is selected to match the two solutions at the 5

probability level.
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Figure

Co_i_Da r i son s

VALIDATION CASE 8 (Cor:tinued)

V8-2 F'robabili_tic Anal/sis Results -

of the NESSUS and the Theoretical Solutions

_H_CmL SHELL
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VALIDATION CASE ii

TITLE_

PROBLEM

TYF'E + -'- ','

RESPONSES: Cr: ._._,c-+'. F _-.--.,_=.+,'-_-

FEM MODEL: NESSu,19. e'+_-+ment, +:,'p:2 :/_'_. -- ,,:,-,L................r ,-._.,_. ._:-_e! i _-i*..:+:,_"
N..tmber of ___lement=__ = ]74

NumOer of r__,de_ = 50 _,,_oe:,,_-ees--of-freedom ;.÷r "-,c,_--',

E:ounOar.* condition'-=-: t'._(:dei,,l',4 _ and 50 ÷i:;:e.d

._,-"+-.,,_e"Z _o 4E _"e'_ "_,.n i!. f:,ir, ._nc_ ],. ,_- ',' --,?.t._" i _-,-,

,K..+,]u._-e '._, -:.._?e ,-_-.... h ar:d ,u-r-,__,_'=m,-,----_..

P

!,,2 mode i

ANALYTICAL SOLUTION:

F' = {E/4(i-v"2) ]_[h/R]'""7_',

where P = critical pressure

E = modulLts

h = thickness

R = radius

v = Poisson's ratio

_eeeren.ze: R. J. Roark and W. C. Young, Formulas for Stress and Str_

Fifth edition, p. 556+ McGraw Hill Book Co.
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NESSUS CONVERGENCE/PERTURBATION SETTINGS (ixlESSUE; 2.7 Version

_ . [n r_,r_AhE:j- DATA *F'ERT _" -"
1" P'_-n MODE-.. DATA *ITER 0 _.

2. F'e_t,_:rbation Range:
*0.I star.,da:-d devlatiens for both random variables.

SOLUTION COMPARISON:

I. Deterministic solution using mean values of random variables:

• NE=-.UD RatioTheory ' _-_" -

2. 743 3. 04408 I. IC,q7

2. F'robabilistic solutions at selected probabiiistic levels:

Theory: Exact CDF based on analytical solution

NESSUS: (Using PFEbl module)
Mean-Value-First-Order (MVFO) solution

Advanced MVPO solution

(See Figure 2 for comparison)

REMARKS:

i. in Fig. 2, an adjusted "exact" probabilistic solution was derived by

multiplying the exact solution by a factor of 1.1097. This factor is

the ratio of the FEM solution to the exact solution, computed at the

median values.
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VALIDATION CASE ii : ,_....._.e,:

0
el

o
0.

0
>

0

E
u

0

B

2.9

_ EXACT
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VALIDATION CASE 12

TITLE: Random Vibration Analysis of Cantilever Team

PROBLEM: Determine the probabilistic distribution of the root-mean-

square of the tip displacement

TYPE: Base,excited random vibration

RESPONSES: Tip displacement root-mean-_quare
FEM MODEL: NESbUS element type 98 - Two-node Timoshenko beam element

Number of elements = 20

Number of nodes = 21 (6 degrees-of-freedom per node)

Boundary conditions: Base-excited cantilever

Figure V12 - 1 FEM model

A

PSD

,.ooo?Ays

ANALYTICAL SOLUTION (single-degree-of-freedom approximation):

Mean-square displacement

: 1.7075 * (LS • W^ * rZ.S) / (EZ.S ,t3 *Xi)

where L : length

W^ : acceleration (power) spectral density

r = mass density (per unit volume)
E = modulus of elasticity
t : thickness

Xi = damping factor

Reference: Clough, R. W., and Penzien, J., Dynamics of Structures,

McGraw-Hill, New York (1975)
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VALIDATION CASE 12 (Continued]

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables : 8
....................................................................

Variables Distribution Median Coef. of Varia

Young's Modulus

Length

Thickness

Width*

Density

Damping
Acceleration PSD

PSD Cut off freq.*

Lognormal 106 psi 3%

Normal 20 in i%

Normal 0.98 in i%

Normal 1.0 in 1%

Lognormal 2.5-4 ib-sec2/in 4 2%

Lognormal 0.05 10%

Lognormal 1.0 in2/sec3-rad 10%

Normal 1000 Rad/sec 10%

*Note: These two variables have no random effect on tip displaceme

NESSUS CONVERGENCE/PERTURBATION SETTINGS

I. *ITER @

20 0.001

2. Perturbation settings:

+0.1 standard deviations for all random variables.

SOLUTION COMPARISON: (NESSUS 3.1)

I. Deterministic solution using mean values of random variables:

Root-Mean-Square Displacement

Theory 5.384E-04 in

NESSUS 5.593E-04 in

NESSUS/Theory 1.0388

2. Frobabilistic solutions at selected probabilistic levels:

Simulation: Monte Carlo (sample size : I00,000)

NESSUS: Mean-Value-First-Order (MVFO)

Advanced MVFO (AMVFO)

First iteration

(See Figure VI2 - 2)

REMARKS: (NESSUS 3.1, September 1988)

i. The mean first- and second-mode frequencies are 498 rad/sec and 3_

rad/sec, respectively. The cutoff frequency (1000 rad/sec) was

chosen to excite, approximately, only the first mode.

2. The perturbation solutions are based on re-calculations.
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VALIDATION CASE 12 (Continued)

Figure V12 - 2

99.997%

RANDOM BASE EXCITATION

/

;=,,-

<

O

>

<
.,.I

D

99.865%'-

97.725% ..-1

84. | 34%-

50.000%

O.S

-- 'EXACT'

i

O.S4

/

/

0.58 0.62 0.66 0.7 0.74 O,7B

(Thousandths)

RMS of Tip Dmsplacement On.)

o MVFO _ AMVFO '_ IST ITER.
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APPENDIX G

PBEM Example Problem

H.R. Hillwater

Southwest Research Institute
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PBKN EJJLMPLE PROBLKN

The PBEM example problem is to determine the probabilistic

response of a cantilever beam of dimensions I0 x 0.99 x 1.0 with a

constant axial end load. The model consists of 6 elements with 20

nodes and is shown in figure ?. The response variable is the end

axial displacement. The sensitivity of the response variable to the

random variables was determined with PBEM. The relavent data was

extracted from the perturbation data base by PREFPI and

probabilistic analysis was performed with FPI. The random variable

input data is listed in table ?.

Table ? Definition of randonv'deterministic variables

Variables Distribution Mean COV

end load normal I00.0 psi 10%

Elastic modulus normal IO.E+6 10%

length normal I0.0 in. 10%

Response variable - end axial displacement

Results

Figure ? shows the mean value first order (MVFO) solution for

PBEM along with the analytical solution. In addition, the advanced

mean value first order solution (AMVFO) at the +3,0 standard

deviation level was computed by resolving the problem used the most

probable design points as input. The results agree well with the

analytical solution. This technique is identically equivalent to

the FEM procedure. Thus, the saree analysis technique can be used

for both FEM and BEM.
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APPENDIX ?

PBE_I inpu t fiIe

(comments are

**ECHO

**CASE CONTROL

TITLE PBEM TEST

TIMES

**MATERIAL PROPERTY

ID MATI

]SO1 ROP ]C

TEMPERATURE

F_MODULUS

POISSON

**GMR

ID REGI

MAT MAT I

TREFERENCE

POINTS

I 0.00000

2 10.00000

3 10.00000

4 0.00000

5 5.00000

6 I0.0

7 5.0

8 0.0

9 0.00000

I0 I0.00000

II I0.00000

12 0.00000

13 5.00000

14 10.0

15 5.0

16 0.0

17 0.0

18 IO .0

19 10.0

2O 0.0

SURFACE SURF11

listed on the right in parenthsses)

OF CANTILEVERED BEAM - L=IO,T=.99,W=I.O

1.0000

70.0000

I.O0000E+07

.000000

70.0000

0

0

-0

-0

0

0

-0

0

0

0

-0

-0

0

0

-0

0

0

0

-0

-0

.4950000

.4950000

.4950000

.4950000

.495

.0

.495

.0

.4950000

.4950000

.4950000

.4950000

.495

.0

.495

.0

.495

.495

.495

.495

0.5000

0.5000

0.5000

0.5000

0.5

0.5

0.5

0.5

-0.5000

-0.5000

-0.5000

-0.5000

-0.5

-0.5

-0.5

-0.5

0.0

0.0

0.0

0.0
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TYPEQUAD

ELEMENTS

!

2

3

4

5

6

NORMAL

**BCSET

ID TRACTION

VALUE

GP1R REGI

I ÷

25184736

! 5 2 IB 10 13 9 17

2 6 3 19 13 14 I0 IB

3 7 4 20 12 15 11 19

II 15 12 16 9 13 I0 14

4 8 1 17 9 16 12 20

SURFACE SURFII

ELEHENTS 3

TIMES I.0000

TRACTI ON I

SPL]ST ALL

T I I.O0000E+02

**BCSET

ID RIGBODX

VALUE

GMR RE61

SURFACE SURF! I

ELEHEHTS 6

TIMES I .0000

RIGID I

**BCSET

ID RI GBODY

VALUE

6MR RED!

SURFACE SURF11

ELEHB¢[S 6

TIMES 1.0000

RIGID 2

**BCSET

ID RIGBODZ

VALUE

GMR REGI
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SURFACE SURFII

ELEMENTS 6

TIMES 1.0000

RIGID 3

**PROB

**DEFINE I

]00.0 I0.0

BCSET

]D TRACTION

VALUE

6MR REGI

SURFACE SURFII

ELEMENTS 3

TIMES I.O000

TRACTION I

SPLIST ALL

T I ].O0000E+O0

**DEFINE 2

lO000000. 1000000.

MATERIAL PROPERTY

ID MATI

ISOTROPIC

TEMPERATURE 70.0000

k'MODULUS 1.00000

POISSON .000000

**DEFINE 3

10.0 1.0

OMR

ID REG1

MAT MATI

TREFERENCE 70.0000

POINTS

i 0.00000

2 1.00000

3 1.00000

4 0.00000

5 0.50000

6 l.O

7 0.5

8 0.0

0,00000

0 o00000

0.00000

0.00000

0.0

0.0

0.0

0.0

(START OF PROBABILISTIC DATA)

(R.V. I = end load)

(mean, standard deviation)

(format identical to

(deterainisCic)

(R.V. 2 = elastic mod)

(perturb only Elastic Hod)

(factor for Poisson = O)

(R.V. 3 = beam length)

(perturb only length)

0.0000

0.0000

0,0000

0,0000

0.0

0.0

0.0

0.0
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? 0,00000

I0 !.00000

Ii I.00000

12 0.00000

13 0.50000

14 !.0

15 0.5

16 0.0

17 0.0

18 I.0

19 ].0

20 0.0

SURFACE SURFII

TYPE QUAD

ELEHEWrS

1

2

3

4

5

6

NORMAL

**PERT

1

**PERT

2

**PERT

3

*mEND

!

0.I

2

0.I

3

0.I

0.00000

0.00000

0.00000

0.00000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0,0

25184736

I 5 2 18 I0 13 9 17

2 6 3 19 II 14 I0 18

3 7 4 20 12 15 II 19

II 15 12 16 9 13 I0 14

4 8 1 17 9 16 12 20

0 °0000

0.0000

0.0000

0.0000

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0,0

(define random variable

number, perturbation factor

and solution type for each

perturbation - solution type

I = resolution)
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APPENDIX H

Verification Studies of the Advanced Boundary Element Code BEST3D

S.T. Raveendra
T.A. Cruse

Southwest Research Institute
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i, 0 SUMMARY

This report describes the verification studies of BEST3D [I] code for

efficiency and accuracy. The boundary element code was run on CRAY X-MP at

NASA LeRC and the results were mostly compared to the finite element results

obtained using a MARC program [2]. Unlike the FEM code, the boundary element

code was not optimized to run on CRAY, thus, the run time comparison does not

give a good indication of the efficiency of the BEM code. Nevertheless, the

results give a good guide as to the improvements necessary to make a general

purpose computer program such as BEST3D to be competitive to FEM codes.
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2.0 VERIFICATION RESULTS

2.1 Analysis _f T-Jolnt Beam

TITLE: TJOINT

PROBLEM: Elastic Stress Analysis of T-Joint Model with a semi-elliptic

crack at the weld

t

3.75

Figure i. T-Joint Beam wlth Elliptic Flaw
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BEM MODEL: Number of Regions - 4

Number of Symmetry 0

Element Type Quadratic

Number of Elements 212

Number of Nodes 560

Region IV

Region I

Region

Crsck Front

Figure 2. Multi-reglon BEM Map for T-Jolnt Beam
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COMPARISON MODEL:
Two-Dimensional Plane Strain Model Using B!EC_X code [3]

Element Type - Linear

Number of Elements - 143

Number of Nodes 144

--L_ -- -- 4.0 in.

_m-025

,ml.-

t
m

_1

Figure 3. Plane Strain BEM Map
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SOLUTIONCOMPARISON:

Solution Tim_- 571 sec

O

m

• BEST3D

+ CRX3D

Figure 4. Mode I Stress Intensity Factor Comparison

339



REMARKS:

Figure 4 shows the mode I stress intensity factor along the crack front

normalized with respect to two-dimensional plane strain solution. The results

indicate that the mode I response is similar to the plane strain response at

the interior of the body, but the stress intensity factor at the surface is

higher, as expected. The BEST3D results shown are by using standard quadratic

elements, whereas, the CRX3D [3] results are due to the same three-dimensional

model with special crack-tip elements. Attempt to use quarter point element

at the crack front by moving the mid-side node to quarter point was not

successful since the BEST3D program failed in subroutine ERCTRL. This was due

to the fact that some of the source points were too close to some of the field

elements. The sub-segmentation scheme employed estimated the size of the

subdivided element dimension as zero. The manual does to give any indication

as to the size of the element that could be used with the code. Also no error

message was given to enable the user to find the area of difficulty in the

mesh.

An error in subroutine GEOMAT of the code was detected while verifying this

model. The part of the code that searches for the largest dimension was as

follows:

40 XLEN - 0

DO 20 I - I, NNODET

DO i0 J-I,NDEGF

IF (ABS(ARRA(J,I)).LE.XLEN) GOTO I0

XLEN - ARRA(J, I)

i0 CONTINUE

20 CONTINUE

The corrected statements are as follows:

40 XLEN - 0

DO 20 1 - i, NNODET

DO i0 J-I,NDEGF

IF (ABS(ARRA(J,I)).LE.XLEN) GOTO i0

XLEN - ABS(ARRA(J, I) )

I0 CONTINUE

20 CONTINUE

Without this modification, it is possible for XLEN to have a final value of

zero.

Further, a modification to the tolerance value in subroutine COMCYC was

necessary to run this model. This subroutine matches the nodes of interfaces

by checking the difference between the distance between nodes at the

interfaces to an absolute value of 0.01. When the distance between the nodes

was smaller than this tolerance, the wrong nodes were matched at the
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TITLE:

PROBLEM:

interface.
of 0.001.
this problem.

2.2 Analysis of Double Notch Specimen

DOUBLENOTCH

(i) Double Notch Model Subjected to Traction Loading
(a) Linear Boundary Elements
(b) Quadratic Boundary Elements

(2) Double Notch Model Subjected to Displacement Loading
(a) Linear Boundary Elements
(b) Quadratic Boundary Elements

(3) Double Notch Rotated About the Z-Axis

For the purpose of running this model, we used a tolerance value
A relative, rather than absolute value maybe used to eliminate

[2.1]

[2.2]

[2.3]

[2.4]

[2.5]

IO

2O

2O
2

20_Ma x Stross

LOAD r:$ E - 78.261 x 106

v - 0.30435

Figure 5. Double Notch Specimen
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BEM MODEL: Number of Regions i

Number of Symmetries - 2

Table i

2.1

Elements 24

Nodes 23

2.2 2.3 2.4 2.5

24 24 24 24

69 23 69 69

Figure 6. BEM Map for Double Notch
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COMPARISON MODEL: MARC Finite Element Program

Element Type 20-noded elements

Number of Elements 150

Number of Nodes 188

Figure 7. FEM Map for Double Notch
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SOLUTION COMPARISON:

Table 2 : Stress Concentration Factors - Traction Loading

KT

BEM (2. I)

CPU (sec)

14.53 ii

BLM (2.2) 17.64 36

FEM 15.33" 49

Table 3 : Stress Concentration Factors - Displacement Loading

KT CPU (see)

BEM (2.3) 6.72 II

BEM (2.4) 7.66 36

FEM 6.45* 49

Table 4 : Centrifugal Loading

Ommx/Oopp

BEM (2.5) 15.96

FEM 13.82"

at Gauss points

CPU (sec)

36

45 +

+ smaller output selected
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REMAKKS:

The stress concentration factors indicate that quadratic modeling increases

the accuracy of the problem; however, the use of higher interpolation results

in longer run time. The lower values of FEM stress concentration factors were

partly due to the evaluation of the quantities at the nearest integration

point compared to BEM values evaluated at the surface nodal point. The BEM

run time for this model compares favorably with the FEM times. A primary

advantage of BEM over FEM for this problems is the ease of generating and

verifying the BEM surface model.

There was an incompatibility between the program and input manual in Geometry

Definition Section (Section 5.5). For linear elements, the keyword according

to program manual was LINE, whereas, the program recognized LINI as the

keyword for linear elements. When ran with the wrong keyword, the program

executed without any error message using the default option. It is useful if

the program warns the user when non-recognizable keywords are encountered.

The record length of the direct access file FT32 was too small and had to be

increased from 18,000 characters to 108,672 characters in subroutine BCASSM.
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TITLE:

PROBLEM:

2.3 Analysis of Turbine Blade Model

_ TURBINE BLADE

Free Vibration and Quasi-static Analysis of Turbine Blade

Model with Body Force Loading

(I) Turbine Blade Model Subjected to Pressure Loading

(a) Linear Boundary Elements

(b) Quadratic Boundary Elements

(2) Turbine Blade Model Subjected to Centrifugal Loading

(a) Fixed Boundary Condition

(b) Spring Boundary Condition

(3) Free Vibration Analysis of Turbine Blade Model

[3.3]

[3.4]

[3._]

A

E - 18.4 x 106

v - 0.386

p - 0.000805

- 3936.1

Figure 8. Turbine Blade Model
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BEM MODEL: Number of Regions 3

_Number of Symmetry - 0

Table 5

3.1 3.2

Elements 333 333

Nodes 339 999

3.3 3.& 3.5

359 359 359

1080 1080 1080

L additional row of

,' elements for

/centrifugal

loading model

i
I

Figure 9. Multi-Region BEM Simulation of Turbine Blade Model
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COMPARISON MODEL:
MARC Finite Element Program

Element Type MARC Element =7 (8 & 6 noded elements)

Number of Elements - 1456

Number of Nodes 2454

r

i

Figure I0. FEM Mesh for Turbine Blade Model
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SOLUTION COMPARISON:

Table 6 : Pressure Loading

BEM (3.1)

BEM (3.2)

FEM

O=_/OopD

A B C D E F

67 -6 43 -89 41 -20

81 12 33 -177 79 -21
, ,,,,,

85 15 40 -134 118 -19

CPU (set)

355

1839

78

Table 7 : Centrifugal Loading - Fixed Base

o../Oop. CPU (set)
,., ,,

o P Q

BEM (3.3) -0.048 0.701 0.137 1994

FEM 0.094 0.605 0.204 83

Table 8 : Centrifugal Loading - Spring Base

o..Io._ CPU (sec)

O P Q

BEM (3.4) -0.I15 0.692 O.I01 1999

FEM 0.080 0.600 0.214 82

Table 9 : Free-Vlbraclon

Mode I Mode 2 Mode 3 CPU (sec)

BEM (3.5) Job aborted

FEM 27382 46296 55236 426
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REMARKS:

Table 6 compares the vertical stress at the fixed base (see Figure 8) due to

pressure loading normal to the surface at the airfoil. The results are again

improved by using quadratic boundary elements; the results due to quadratic

elements compare well with the FEM results. Unlike the BEM results, the FEM

values were evaluated at integration points nearest to the corresponding

surface points.

The stresses at the airfoil near the interface due to the rotation of the

turbine blade about the horizontal axis are compared in Table 7 and 8. The

results in Table 7 were obtained assuming fixed boundary conditions at the

base, while the results in Table 8 were due to spring boundary conditions.

The BEM run times for the turbine blade model are considerably larger than the

corresponding times using FEM. These were mainly due to the need to use much

finer boundary element mesh than necessary for boundary data interpolation

necessitated by the complexity of the geometry. A detailed investigation of

the run time efficiency is given in Section 3.

For the purpose of comparison with finite element method, an additional row of

elements at the airfoil near the interface was created. While this did not

cause any problem for the centrifugal loading case, it was not so for the

pressure cases (3.1 and 3.2). The application of pressure normal to the

airfoil surface was simplified by the use of local boundary conditions which

permitted the imposition of load with respect to local coordinates. While the

user's manual specified the maximum number of points with local coordinates

system definition as 500, the code was not compatible with this number. In the

code, it appears that the local coordinate system definition nodes are stored

by element, thus the limit appears to be dependent on the number of elements

with local coordinates system. The pressure loading example was thus run

without one row of elements at the interface.

A variety of problems were encountered in running the turbine blade model for

natural frequency analysis. Initially, it was noted that the number of points

allowed per sub-region for free-vibration analysis, in subroutine BMASS, was

smaller than the value specified in the user's manual. This was increased to

the required size to permit testing of turbine blade model. The job using

modified code aborted with the following error message:

READ ON UNIT FTI9 IO020 - RECORD LENGTH EXCEEDED

- BEGINNING OF TRACEBACK

$TRBK WAS CALLED BY IOERP% AT 3104125d

IOERP% WAS CALLED BY %$RUV% AT 3112247d

%$RUV% WAS CALLED BY BMASS AT 305A736a(LINE

NUMBER 191)

BMASS WAS CALLED BY BCASSM AT 3072322d(LINE
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NUMBER 103)

BCASSM WAS CALLED BY BEST3D AT 3070700c(LINE

- NUMBER 88)

An attempt to correct this error was unsuccessful. The failure occurred after

7000 seconds of execution time.
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2.4 Analysis of Hollow Sphere

TITLE: -HOLLOW SPHERE

PROBLEM: Elastoplastic A_alysis of Hollow Sphere due to Internal Pressure

(I) Iterative Solution Procedure

(a) Internal/External radius ratio - 0.5 [4.1]

(b) Internal/External radius ratio - 0.8 [4.2]

(c) Internal/External radius ratio - 0.9 [4.3]

(2) Non-Iterative Solution Procedure

(a) Internal/External radius ratio - 0.9 [4.4]

(3) Particular Integral Approach

(a) Internal/External radius ratio - 0.9 [_.5]

Number of Regions - i

Number of Symmetry 0

Number of Nodes - 68

Number of Elements - 22 (8-noded, quadratic)

Number of Cells - 5 (20-noded, quadratic)

$ 2b i

-0.3

H-O0

BEM MODEL:

Figure ii. BEM Model for Hollow Sphere
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COMPARISON MODEL: Analytical Results [5]

SOLUTION COMPARISON:

Table i0 : Solution Times

4.1

CPU 214

(sec)

4.2 A.3

137 132

L6

HOLLOW SPHERE

b/a ,, 2

L5

L4

L3

L2

LI

P 1

0"0 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0-2

0.1

0

I

{ J t t t t 7 t t t I t l

0 0.2 0.4 0.6 0.8 I 1.2

Eu/O-&
n

n BEST30 -- THEORETICAL

1.4

Figure 12. Load-Deformation Response for Hollow Sphere (b/a - 2)
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Figure 13. Load-Deformatlon Response for Hollow Sphere (b/a - 5/4)
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Ve - 10/0
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Figure 14. Load-Deformatlon Response for Hollow Sphere (b/a - 10/9)
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Figure 15. Plastic Collapse Response of Thin Hollow Sphere

Using the Variable Stiffness Procedure

0.24

O.22

O.2

0.18

0.IS

0.14

p o.12

0 o 0.1

O.OI

O,O4

0

HOLLOW SPHERE

k_"m - 10/11

C_PS[ LOAD

; w i , i

0 O.2 0.4 0,8 Oa 1 1.2 L4

004
1141:ORICT_ * PARTIC_

Figure 16. Plastic Collapse Response of Thin Hollow Sphere
Using Particular Integral Procedure
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REMARKS:

Three different boundary element models were selected to represent thick and

thin hollow spheres. In all three cases, the outer radius was kept at 20 and

the inner radius was changed such that the ratio of outer radius to inner

radius varied from 2 to 10/9. The BEM map shown in Figure ii corresponds to a

b/a radius of 2. For the thinner models, the distance along the thickness was

scaled accordingly.

Figures 12 16 show the load displacement response due to internal pressure.

The displacements were monitored at the outer radius of the spheres. The

comparison of BEST3D results to analytical values indicate excellent accuracy

of the BEM procedure. A comparison of time for cases 4.3 and 4.4 indicate

that computing time for the iterative and non-ltertaive solution procedures,

are essentially the same for thi_ _xample, however, the results based on

particular integral techniques i_ The most efficient computationally. The

difference in accuracies between various solution procedures were too small to

be noticeable.

The requirements for volume modeling are not explained clearly in the user's

manual. The manual does not specify whether the volume cell and surface

element nodes need to be matched. The code includes two types of volume

cells; quadratic cells and constant plastic strain cells. However, the user's

manual wrongly implies the constant strain cell as linear cell.

A solid sphere or cylindrical model could not be modeled using a segment of

the body as was done for hollow sphere. The local boundary conditions at zero

radius is not permissible in the current code and gives erroneous results.

This limitation is not pointed out in the user's manual.

Convergence of solution is not identified by the code for a non-iterative

solution procedure. Due to this, a collapse load in Figure 15 was assumed,

based on displacement solutions. Inclusion of an automated scheme to check

collapse is essential for general usage of the non-lterative procedure.
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2.5 Analysis of Cantilever Beam

TITLE: -GANTILEVER BEAM

PROBLEM: Transient Analysis of Cantilever Beam

(i) Free Vibration Analysis

(2) Forced Vibration Analysis

L

H

L/H=3

H/W=2
W

E - 30 x 106

v-0.3

p- 0.0007339

Figure 17. Cantilever Beam Model
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BEM MODEL: Number of Regions i

Number of Symmetry - 0

_\ "\

a) BEIq Map 1

b) BEI4 Map 2

c) BKI4 lqap 3

Figure 18. BEH Maps for Cantilever Beam Model
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COMPARISON MODEL: MARC Finite Element Program

Element Type : 8 noded Linear Elements

a) FKM Map I

b) gl_MMap 2

Figure 19. FEM Meshes for Cantilever Beam Model
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SOLUTION COMPARISON:

- Table ii : Natural Frequencies from BEST3D

Natural Frequencies

Mode i Mode 2

BEM-I 2683 5412

BEM-2 2807 5310

BEM-3 2836 5288

Mode 3 Mode 4 Mode 5

13473 16749 24918

12728 16210 24262

12591 15889 24061

CPU(sec)

CRAY

X-MP

Nodes/

Elements

14 44/14

48 86/28

365 206/68

Table 12 : Comparison of Natural Frequencies

BEM- i

FEM- i

FEM- 2

Natural Frequencies

Mode 1 Mode 2 Mode 31Mode 4 Mode 5

2683 5412 13473 16749 24918

3033 5449 13191 17227 25141

2885 5354 12778 16224 24522

CPU(sec)

VAX 8700

Nodes/

Elements

336 44/14

158 195/96

801 1125/768
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REMARKS:

Three BEM and-two FEM models were generated as shown in Figures 18 and 19,

respectively. Table Ii compares the first five normal modes of natural

frequency obtained from BEST3D runs. The results indicate that considerably

accurate results can be obtained by using a crude model as the first BEM map

in Figure 18. An attempt to run the FEM models using MARC on CRAY was

unsuccessful as the results did not converge. However, the results from the

same FEM models converged on VAX 8700 using the VAX version of the MARC

program. To compare the results, we ran BEM model 1 on VAX 8700 as well.

These results indicate that the BEM approach is a viable alternative to FEM

procedure for free-vibration analysis. It should be noted that in the current

FEM modeling, the cantilever beam was modeled as a continuum. The FEM

approach using beam elements for this problem will be considerably cheaper,

nevertheless, for general three-dlmenslonal bodies where continuum modeling is

required, the BEM method is competitive.

The forced vibration analysis of cantilever beam model using the boundary

element method procedure was not completed due to unrealistic constraint in

the BEST3D code input structure for time-domain forced vibration analysis. The

problem we selected for the analysis corresponds to the application of the

load to a maximum value in a very short time followed by gradual relaxation of

load. In BEST3D code, the load needs to be applied such that the time

interval that can be used during the analysis should be less or equal to the

loading time. Since there is no facility to change this time step at later

times, we were required to use the same time step throughout. This requires

the use of an unrealistic number of time steps, thus, the forced vibration

analysis for the cantilever beam model was not completed.
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3.0 INVESTIGATIONOFNUMERICALINTEGRATIONOFSURFACEINTEGRALS

3.1 Alternative Integration Schemes

Consider the run time divided broadly according to various tasks during the

solution of a double notch specimen analyzed in Section 2.1. The run times

for various tasks on VAX 8700 for a model of 69 nodes and 24 quadratic

boundary elements is as follows:

(a) Surface integration time - 336 sec

(b) Initial matrix assembly time - ii sec

(c) Solution time - 33 sec

This example illustrates that about 88 percent of the total computer time was

spent on evaluating the discretized boundary integrals. An efficient and

accurate procedure for the evaluation of surface integrals is, therefore,

essential for the BEM to be competitive to FEM. The BEST3D code uses a

sub-segmentation scheme for the evaluation of non-singular integrals and

transformation based on polar coordinates for singular integrals. The

sub-segmentation scheme is essentially based on finding the element dimension

to satisfy a specified error tolerance derived from approximate Gaussian error

rules. The sub-element evaluation also considers the distance between the

source point and the element over which the integration is performed.

An alternative procedure proposed recently in the context of surface integral

evaluation of boundary integral equations is the variable transformation

procedure. In this procedure, the integral points are weighted towards the

sinEular node by a transformation procedure, thus, no element subdivision is

used. In the current investigation a third-degree polynomial transformation

is used [6].

The variable transformation procedure weights integration points according to

the distance between the source point and the element of interest; the

weighting becomes less pronounced for elements that are far away from the

source point. The transformation procedure requires additional operation than

the operations from regular application of integration rules. To avoid

unnecessary calculations for elements that are beyond a certain distance from

the source point regular integration procedures can be used. Thus, a regular

and variable transformation procedures can be combined such that regular

integration is performed for far elements and variable transformation

procedure is used for near elements.

Initially, we considered a hollow sphere with an external radius to internal

radius ratio of 2 subjected to internal pressure. The BEM map used is shown

in Figure ii. The model was run using subdivision (SD), variable

transformation (VT) and variable transformation combined with regular

integration (VR) procedures. Figure 20 shows the normalized hoop stress along
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i

the radius of the sphere using various procedures; the results are essentially

identical. The integration times due to various procedures are summarized in

Table 13 indicating a slight reduction in computing time using the VR

procedure.

Table 13 : Comparison of Integration Procedure for Hollow Sphere

Integration time

CPU (set)

SD 129
,=

VT 126

VR 116

The cantilever beam model shown in Figure 18 (BEM map 2) fixed at one end and

subjected to a shear loading on the other end was run using various

integration procedures. The results for normal stress the support short in

Figure 21 are essentially identical for different integration procedures. The.

computing time shown in Table 14 also indicates a small advantage of the VR

procedure.

Table 14 : Comparison of Integration Procedure for Cantilever Beam

Integration time

CPU (sec)

SD 185

VR 175

The results using variable transformation procedure for the hollow sphere and

cantilever problems does show any substantial saving in computer times since

the boundary discretizatlon used in the above models were regular, thus, the

sub-dlvision requirement is negligible. To see the effect of integration

procedures on a graded mesh we analyzed a circular crack model shown in Figure

22. The computing time shown in Table 15 indicates a saving of more than 25

percent using the VR procedure. However, the stress intensity factors shown

in Table 15 indicates considerable error using the VR procedure. However, the

results using VR procedure also was angularly dependent, thus, they do not

meet acceptable accuracy requirements.
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Table 15 : Circular Crack Results and Computing Times

K,/o Integration time

CPU (sec)

SD 1.02 959

VR 1.17-1.34 702

Currently, we do not have a way to estimate the error in variable

transformation procedures. The variable transformation results, thus, does

not seem to be as reliable as the subdivision method as implemented currently.

3.2 Error Tolerance on Efficiency and Accuracy

While the subdivision algorithm implemented in BEST3D indicates high accuracy,

the computing time in relation to overall solution time is too high. One

factor that dictates the degree of subdivision is integration error tolerance.

Here, we investigate the effect of error Tolerance on computing t_me and

accuracy. The default value of error tolerance used in BEST3D code is 0.001.

Initially we examined a double notch specimen by changing the error tolerance

from 0.001 to 106 . The results for stress concentration factor and

integration time in Table 16 indicates that while the change in stress

concentration factor was negligible the computed time was reduced almost by a

factor of 2.

Table 16 : Effect of Error Tolerance - Double Notch Model*

K T Integration time

CPU (sec)

0.001 7.06 273

0.01 7.06 221

0.i 7.06 185

1 7.06 171

i00 7.07 152

106 7.08 14_

* symmetric faces were modeled
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Finally, we analyzed the circular crack model shown in Figure 22. The results

in Table 17 a_ain indicate that the value of error tolerance hardly affect the

accuracy of the solution but improves the computing time substantially.

Table 17 : Effect of Error Tolerance - Circular Crack

0.001

I000

K_/o

i .02

1.02

1.02

Integration time

CPU (sec)

959

689

645

4.0 CONCLUDING REMA/LKS

The boundary element results using BEST3D computer program for the cases

tested indicated high accuracy of the code. Some areas of concern detected

while running the code are presented with result in Section 2. While the code

is efficient for the analysis of bulk structures such as double notch

specimen, the efficieny for thin structures such as the turbine blade mode is

not very encouraging. It appears that a major area for improvement is the

numerical evaluation of discretized integrals. A limited study reported in

Section 3 shows that while the subdivision algorithm used in BEST3D code is

reliable, it is not very efficient, especially when the default error

tolerance is used. A reliable and efficient numerical integration procedure

for general three-dimensional boundary integrals is still lacking. Further

effort in devising alternative schemes such as a combination of analytical and

numerical procedures is desirable.

While the evaluation of discretized integrals is one problem area, it is not

the only one. For example, consider the turbine blade model problem examined

in Section 2.3. The run time for the model can be divided broadly into three

parts (e.g., Case 3.4):

(a) Surface integration time

(b) Initial matrix assembly time

(c) Solution time

- 718 sec

- 534 see

- 743 sec

In analyzing a thing structure such as turbine blade model, the task of

evaluating numerous near singular integrals imposes a heavy burden. In all

these analyses, we used the default value for the error tolerance, however,

the results reported in Section 3 indicate that the accuracy of the results is
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not diminished considerably by the use of higher error tolerance. Thus, the

surface integration time may be reduced by using a higher error tolerance than

the default value used in Section 2 analyses.

It is also evident that the computing time for matrix assembly and solution is

also substantial for a large scale problem such as the turbine blade model.

The matrix manipulation involved in these two tasks may be made substantially

efficient by rearranging some matrix operation and optimizing the code.

Finally, the BEST3D code used was essentially developed for mini-frame

computer, thus, does not take advantage of the architecture of the super

computer used for the current run tlme comparison. Assembly and solution of

BEM system can be improved considerably by optimizing the code for CRAY

computers. Therefore, an efficient, reliable, and accurate numerical

integration procedure as well as optimization of the code are necessary to

make a reasonable comparison of general purpose BEM code such as BEST3D to

corresponding FEM codes that are specifically tailored for CRAY.
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